• Title/Summary/Keyword: Shoe-heel height

Search Result 43, Processing Time 0.021 seconds

Foot/Ankle Roll-Over Characteristics According to Different Heel Heights of Shoe during Walking (보행 시 신발 굴 높이어 따른 발/발목 복합체의 Roll-Over특성)

  • Kim, Young-Ho;Choi, Hue-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.4
    • /
    • pp.247-253
    • /
    • 2005
  • This study investigated the effects on foot and ankle roll-over characteristics according to different heel heights during walking. Fifteen female volunteers who have neither musculoskeletal nor foot problems were participated in gait analyses, wearing four different pairs of shoes in different heel heights. To obtain roll-over shape of foot/ankle complex, we used trajectories of knee and ankle joints as well as the renter of pressure between initial contact and opposite initial contact. Results revealed that the entire roll-over shape moved distally as the heel height increased but roll-over characteristics showed uniformly with different heel heights. In addition, we found that nondisablea persons automatically adapted to their foot/ankle complex to varying heel heights within 6cm, by moving the origin of roll-over shape distally to maintain roll-over characteristics. However, since the balance of the gait only by the ankle joint could not be achieved beyond the heel height of 6cm, compensations at the knee and the hip joints occurred simultaneously. Roll-over characteristics in human walking would provide simpler and wider understanding of human walking, and furthermore could be applied to the wide understanding of prosthetics and orthotics of the lower extremity as well as orthopaedic shoes.

A Comparative Study on the Characteristics of Friction with/without shoes by Analyzing Bio-signals during walking (보행 시 생체신호분석을 통한 신발 착용 유무에 따른 마찰 특성 비교)

  • Oh, Seong-geun;Kim, Jin-Hyun
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.6
    • /
    • pp.59-66
    • /
    • 2018
  • The utilized coefficient of friction (UCOF) as a ratio of the shear force to the normal force on the ground during walking is used to identify the point at which slip is likely to occur. Shoe walking will change the utilized coefficient of friction by shoe design such as sole thickness and hardness, heel shape, and outsole pattern. In this study, subjects are 21 adults (10 female, 11 male, age: $25.2{\pm}2.3yrs$, height: $165.6{\pm}7.2cm$), analysis variables were walking speed, GRF, when the UCOF is maximal, and Tangent of CoP-CoM angle, and correlation analysis with the utilized friction coefficient (UCOF). As a result, First, for the shod walking the time point which UCOF is maximum about heel strike was faster and the magnitude was larger than for barefoot walking. Second, the correlation between the tangent of CoP-CoM and UCOF of right foot was higher at the left heel striking point (UCOF2_h) which occurred in the post propulsion phase than at the right heel striking point (UCOF1_h). This suggests that the right foot UCOF is related to the braking phase of left foot( which is the propulsion phase of right foot) rather than the braking phase of right foot.

The Relationship among Stride Parameters, Joint Angles, and Trajectories of the Body Parts during High-Heeled Walking of Woman

  • Park, Sumin;Lee, Minho;Park, Jaeheung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.245-252
    • /
    • 2013
  • Objective: This paper analyzes the changes on stride parameters, joint angles, and trajectories of the body parts due to high heels during walking and explains the causal relationship between the changes and high heels. Background: This study aims to indicate the comprehensive gait changes by high heels on the whole body for women wearing high heels and researchers interested in high-heeled walking. Method: The experiment was designed in which two different shoe heel heights were used for walking (1cm, 9.8cm), and twelve women participated in the test. In the experiment, 35 points on the body were tracked to extract the stride parameters, joint angles, and trajectories of the body parts. Results: Double support time increased, but stride length decreased in high-heeled walking. The knee inflexed more at stance phase and the spine rotation became more severe. The trajectories of the pelvis, the trunk and the head presented outstanding fluctuations in the vertical direction. Conclusion: The double support time and the spine rotation were changed to compensate instability by high heels. Reduced range of motion of the ankle joint influenced on the stride length, the knee flexion, and fluctuations of the body parts. Application: This study can provide an insight of the gait changes by high heels through the entire body.

Analysis of Middle Aged and Elderly Women's Foot Shapes for Shoe Design

  • Lim, Ho-Sun
    • Fashion & Textile Research Journal
    • /
    • v.17 no.5
    • /
    • pp.815-827
    • /
    • 2015
  • This study analyzes the characteristics by age and type for middle aged and elderly women foot shapes aged 40-69 years. ANOVA, factor, and cluster analyzed middle aged and elderly women's foot shapes. The results of the study are as follows. First, higher age groups tended to have smaller foot lengths, ball/instep circumferences, circumferences, and ball heights with larger heel height values and higher degrees of gathering of toe 1 and toe 5 toward the feet reference axis. Second, foot lengths were 220 mm-240 mm and the ball circumference's size symbol in high frequency sections were distributed from E to EEEE in the 40s and 60s groups and from D to EEEE in the 50s group. Third, eight factors were extracted through the factor analyses of middle aged and elderly women's foot measurement items. Fourth, a cluster analyses classified the subjects into four types. Type 1 is a normal foot type with medium foot length and small ball circumference and type 2 is a long and flat foot type with a type with large foot length and ball circumference values as well as small ball height values. Type 3 is a thick foot type with a medium foot length, large ball circumference, large ball height and type 4 is a toe deformation foot type with medium foot length, small ball circumference, and a high degree of toe gathering toward the center.

The Effect of Increased Running Speed on the Magnitude of Impact Shock Attenuation during Ground Contact (착지 시 달리기 속도 증가가 충격 쇼크 흡수에 미치는 영향)

  • Ryu, Jiseon
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.3
    • /
    • pp.197-204
    • /
    • 2020
  • Objective: The purpose of this study was to investigate the effect of increased running speed on the magnitude of impact shock attenuation in high frequency (9~20 Hz) at support phase on the treadmill running. Method: Twenty-four healthy male heel-toe runners participated in this study. Average age, height, mass, and preference running speed were 23.43±3.78 years, 176.44±3.38 cm, 71.05±9.04 kg, and 3.0±0.5 m/s, respectively. Three triaxial accelerometer (Noraxon, USA) were mounted to the tuberosity of tibia, PSIS (postero-superior iliac spine), and forehead to collect acceleration signals, respectively. Accelerations were collected for 20 strides at 1,000 Hz during treadmill (Bertec, USA) running at speed of 2.5, 3.0, 3.5, and 4.0 m/s. Power Spectrum Density (PSD) of three acceleration signals was calculated to use in transfer function describing the gain and attenuation of impact shock between the tibia and PSIS, and forehead. One-way ANOVA were performed to compare magnitude of shock attenuation between and within running speeds. The alpha level for all statistical tests was .05. Results: No significant differences resulted for magnitude of the vertical and resultant impact shock attenuation between the tibia and PSIS, and forehead between running speeds. However, significant differences within running speed were found in magnitude of the vertical shock attenuation between tibia and PSIS, tibia and forehead at speed of 2.5, 3.0 m/s, respectively. Conclusion: In conclusion, it might be conjectured that muscles covering the knee and ankle joints and shoe's heel pad need to strengthen to keep the lower extremities from injuries by impact shock at relatively fast running speed that faster than preferred running speed.

Characteristic Analysis and Dating Guidance of European High Heeled Shoes Design in the 18th Century (18세기 하이힐 디자인의 특성 및 연대추정에 관한 연구)

  • Kim, Sun-Ah
    • Fashion & Textile Research Journal
    • /
    • v.10 no.2
    • /
    • pp.128-137
    • /
    • 2008
  • The purpose of this study is to investigate the characteristic analysis and to date guidance of European high heeled shoes in 18th century. The research was conducted by stylistic analysis of high heeled shoes from literature review and museums resource. 14 comparative study on shoe objects dating from 1600-1790 in the Museum at F.I.T., New York, Museum of Art, Boston and Metropolitan Museum of Art, New York were selected. The result of this study are as follows: (1) The origin and development of high heeled shoes were accomplished by protection, social status and exaggeration of body, decoration and fashion. (2) According to the comparative study of Museum objects and literature, characteristic analysis of high heeled shoes from 1700-20s, 1730-40s, 1750-60s, 1770-89 and 1890-1900 were accomplished. (3) Significant elements of European women's shoes from 18th century that aid dating are identified as the presence of white rand, shape of tongue, heel shape and height, latchat, toe shape, color and materials.

Lower Extremity Muscle Activity while Wearing High-heeled Shoes under Various Situations: A Therapeutic Perspective

  • Kim, Yu-Shin;Lim, Jong-Min;Ko, Na-Yeon;Yoon, Bum-Chul
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.3
    • /
    • pp.49-56
    • /
    • 2011
  • Purpose: To evaluate changes in lower extremity muscle activity caused by high heeled shoe wearing during normal, brisk, and upslope walking. Methods: Twenty healthy young women (age, $23.9{\pm}2.47$) participated in this study. Muscle activities of the tibialis anterior, peroneus longus, gastrocnemius lateralis, gastrocnemius medialis, soleus, hamstring, vastus lateralis, and vastus medialis while walking normally, walking briskly, and walking up a slope. Results: When walking normally, the peroneus longus, gastrocnemius lateralis, soleus, and vastus lateralis evidenced higher activity when high-heeled shoes were worn (p<0.05). During brisk walking, the peroneus longus and gastrocnemius lateralis exhibited higher activity (p<0.05). Although the peroneus longus and vastus lateralis exhibited higher activity when walking up an incline with high-heeled shoes, the activity levels of the tibialis anterior and gastrocnemius medialis were lower (p<0.05). Conclusion: The results of this study demonstrate that increased heel height substantially reduces muscle effort when walking up a slope. From a therapeutic perspective, it is possible that using high heeled shoes over a short period might enhance muscle activity of ankle evertor, although it can cause mediolateral muscle imbalances in the lower extremities.

The Comparative Analysis of Wearing Roller Shoes and Jogging Shoes on Kinematic Characteristics in the Lower Extremity during Walking (롤러 신발과 조깅 신발 착용 후 보행 시 하지 분절의 운동학적 특성 비교 분석)

  • Jang, Jae-Ik;Chae, Woen-Sik;Kang, Nyeon-Ju;Yoon, Chang-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.399-406
    • /
    • 2009
  • The purpose of this study was to compare the effect of wearing roller shoes and jogging shoes on kinematic characteristics in lower extremity during walking. Eight male middle school students(age: $15.0{\pm}0.0^{\circ}$ yrs, height $175.9{\pm}6.6cm$, weight: $616.3{\pm}84.9$ N) who have no musculoskeletal disorder were recruited as the subjects. Temporal parameters, step length, stride length, center of mass, velocity of CM, angle of segment, angular velocity and range of motion were determined for each trial. For each dependent variable, paired t-test was performed to test if significant difference existed between shoe conditions(p < .05). The results showed that stride length and velocity of CM in wearing roller shoes were significantly less than those found in wearing jogging shoes. These indicated that walking patterns may be changed by different shoe conditions and unstable braking condition because of wheel. Angle of ankle joint at LHC1 and LHC2 in wearing roller shoes was greater than the corresponding value for wearing jogging shoes. It seems that the ankle joints are locked in an awkward fashion at the heel contact to compensate for imbalance. Otherwise, dorsi flexion was not produced at the heel contact point in wearing roller shoes.

Comparison the Muscle Activation in the Trunk and Lower Limbs of Subjects Wearing High-Heeled or Flat Shoes While Crossing Over Obstacles of Different Heights

  • Park, Jin-Seong;Han, Jin-Tae
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.12 no.3
    • /
    • pp.85-91
    • /
    • 2017
  • PURPOSE: The purpose of this study was to compare muscle activation of the trunk and lower limbs of subjects wearing high-heeled or flat shoes while crossing over obstacles of different heights. METHODS: Twenty subjects participated in this study. While wearing high-heeled shoes (7 cm) or flat shoes (0 cm), the subjects were asked to cross over obstacles of different heights (10%, 20%, and 30% of their lower-limb length). Muscle activation of the trunk and lower limbs with the supported side while crossing over obstacles of different heights was measured using the electromyogram (Noraxon, DTS, Germany). Two-way repeated ANOVA was used to compare the muscle activation between high-heel shoes and flat shoes while crossing over obstacles of different heights. All statistical analyses were performed using SPSS ver. 21, and p-values less than .05 were used to identify significant differences. RESULTS: As an obstacle's height increased, muscle activation of the trunk and lower limbs with the supported side was increased while wearing either type of shoe, and it was generally higher while wearing high-heeled shoes. However, tibialis anterior muscle activity while wearing high-heeled shoes was lower than while wearing flat shoes. CONCLUSION: This study showed that muscle activation of the trunk and lower limbs was higher when subjects wore high-heeled shoes than when they wore flat shoes while crossing over obstacles of different heights. Therefore, high-heeled shoes can easily cause high muscle fatigue of the trunk and lower limbs, and the TA muscle may weaken in persons who wear high-heeled shoes.

Influences of Short-term High-heeled Walking on the Activities of Ankle-stabilizing Muscles in Healthy Young Females (단시간 하이힐 보행이 젊은 여성의 발목 주위근의 근 활성도에 미치는 영향)

  • Kim, Eun-ji;Jeon, Seol-bin;Jeong, Ki-yong
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.21 no.2
    • /
    • pp.39-46
    • /
    • 2015
  • Background: The purpose of this study was to investigate the influence of short-term treadmill walking with high-heeled shoes on electromyography activities of the medial gastrocnemius, lateral gastrocnemius and tibialis anterior in healthy young females. Methods: Fifteen healthy females were recruited for this study. To measure muscle activation, the subjects were asked in random order to walk on a treadmill using either high-heeled shoes or barefoot conditions. The shoe heel height for high-heeled walking was 7 cm. The walking speed on the treadmill was 4 km/h, and the inclination rate of the treadmill was 10%. The subjects performed treadmill walking in the barefoot and high-heeled walking conditions for 5 minutes. Electromyography data were collected from the tibialis anterior, medial gastrocnemius, lateral gastrocnemius, and soleus on both firm and foam surfaces and during eyes-open and-closed conditions while standing. Results: Tibialis anterior activity was significantly different before and after the walking task while standing on a foam surface with eyes closed (p<.05). Conclusion: This finding suggests that the activity of the tibialis anterior may be lowered after high-heeled walking. Therefore, high-heeled shoes contribute to harmful effects at the ankle joints, increasing the risks of falling and musculoskeletal injury.

  • PDF