• 제목/요약/키워드: Shoe-cleat

검색결과 4건 처리시간 0.018초

자전거 운동 중 클릿의 위치 변화에 따른 페달링 수행능력 비교 (The Comparison of Pedalling Performance to according to the Position of Shoe Cleat in Triathletes During Cycling)

  • 박찬호;최보경;허보섭;김용재
    • 수산해양교육연구
    • /
    • 제29권2호
    • /
    • pp.537-543
    • /
    • 2017
  • The purpose of this research is to investigate the effects of different shoe-cleat position on pedalling performance. Four male elite triathletes(age: $22.00{\times}2.16years$, height: $175.12{\pm}8.06cm$, weight: $71.20{\pm}7.89kg$, body fat: $16.62{\pm}3.56%$) and three female elite triathletes(age: $20.00{\pm}1years$, height: $158.40{\pm}2.42cm$, weight: $51.30{\pm}3.89kg$, body fat: $19.26{\pm}2.28%$) participated in 10km time trial and 30sec time trial pedaling tests with the individual time trials based on different shoe-cleat position(cleat front: CF, cleat back: CB). The subjects performed one trial with each type of shoe-cleat position. Maximal power output and average speed were not significantly different during 30s time trial in CF compared with CB. Average power, RPM, and HR were not significantly different during 10k time trial in CF compared with CB. Split time in 1km, 5km, 9km were significantly reduced during 10k time trial in CB compared with CF. We conclude that there was performance advantage in CB using shoe-cleat back position in comparison with CF using shoe-cleat front position.

A Study on the Adjustment Method of Bicycle Shoe Cleat for Bicycle Fitting System

  • Shon, Gyoung-Hoan
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권5호
    • /
    • pp.93-102
    • /
    • 2019
  • The nation's fraternity and elite players who have built up a global bicycle infrastructure often find it to be a problem with the bicycle's speed and speed reduction, pain in knees and hip joints, or even with the bike itself, or with the bike's own physical defects or a riding posture. However, we found that most cases of cleat adjustment errors were likely to be true. Accurate adjustment of the cleats is the most important of the entire fitting process and can be the basis for improving the ability of the bicycle rider and preventing injury. Therefore, the study was intended to give a prior study of bicycle fitting, which can improve bicycle efficiency and prevent injury when riding bicycle, and specific ways of adjusting bicycle shoe cleats, and the following results were obtained. First, the cleat characteristics of Shimano, LOOK and Speedplay, which are currently used in public, and the characteristics during the cleat adjustment process, were derived. In addition, the structure and characteristics of dedicated shoes using cleats and the method of using pedalling by the structure of shoes after adjusting the cleats were derived. Second, the position of the shoe and its relationship with torque in pedalling was discussed, and the method of adjusting front and back of cleats was derived. Third, leg length, ASIS, Q-Angle and Q-factor etc. were analyzed and the method of setting and adjusting cleat left and right values were derived. Fourth, the relationship between walking angle and cleat rotation was analyzed, the method was derived, and the torque size and angle behind the cleat adjustment were compared and analyzed using the spinner to indicate the torque and the effective mean torque angle after the cleat adjustment.

축구화 스터드 형태에 따른 무릎 모멘트의 변화 (Changes in Knee Joint Loading on Infilled Turf with Different Soccer Cleat Designs)

  • 박상균;이중숙;박승범
    • 한국운동역학회지
    • /
    • 제19권2호
    • /
    • pp.369-377
    • /
    • 2009
  • The purpose of this study was to determine the relationship between different soccer cleat designs and knee joint moments. Twelve physically active males (mean(SD): age: 26.4(6.2)yrs; height: 176.4(4.1)cm; mass: 74.0 (7.4)kg) were recruited Kinematic and force plate data were collected for all subjects during normal running and a $45^{\circ}$ cutting maneuver, called a v-cut. Both motions were performed at $4.0{\pm}0.2\;m/s$ on infilled artificial turf with three pairs of soccer cleats of different sole plate designs, and one pair of neutral running shoes. Inverse dynamics were used to calculate three dimensional knee joint moments, with repeated measures ANOVA and post hoc paired Student's t-test used to determine significance between shoe conditions. Significant differences were found in the extension moments of the knee for running trials, and for external rotation and adduction moments in the v-cutting trials. Knee moments were greater in v-cut than running, and the traditional soccer cleats (Copa Mondial and World Cup) tended to result in greater knee moments than the Nova runner or TRX soccer cleat. Cleat design was found to influence 3-dimensional knee moments in a v-cut maneuver. In the translational traction test, there were significant differences between all conditions. In the rotational traction test, friction with soccer shoes were greater than friction with running shoes. However, no differences were found between soccer shoes. Higher moments may lead to increased loads and stresses on knee joint structures, and thus, greater injury rates.

Differences in the Joint Movements and Muscle Activities of Novice according to Cycle Pedal Type

  • Seo, Jeong-Woo;Kim, Dae-Hyeok;Yang, Seung-Tae;Kang, Dong-Won;Choi, Jin-Seung;Kim, Jin-Hyun;Tack, Gye-Rae
    • 한국운동역학회지
    • /
    • 제26권2호
    • /
    • pp.237-242
    • /
    • 2016
  • Objective: The purpose of this study was to compare the joint movements and muscle activities of novices according to pedal type (flat, clip, and cleat pedal). Method: Nine novice male subjects (age: $24.4{\pm}1.9years$, height: $1.77{\pm}0.05m$, weight: $72.4{\pm}7.6kg$, shoe size: $267.20{\pm}7.50mm$) participated in 3-minute, 60-rpm cycle pedaling tests with the same load and cadence. Each of the subject's saddle height was determined by the $155^{\circ}$ knee flexion angle when the pedal crank was at the 6 o'clock position ($25^{\circ}$ knee angle method). The muscle activities of the vastus lateralis, tibialis anterior, biceps femoris, and gastrocnemius medialis were compared by using electromyography during 4 pedaling phases (phase 1: $330{\sim}30^{\circ}$, phase 2: $30{\sim}150^{\circ}$, phase 3: $150{\sim}210^{\circ}$, and phase 4: $210{\sim}330^{\circ}$). Results: The knee joint movement (range of motion) and maximum dorsiflexion angle of the ankle joint with the flat pedal were larger than those of the clip and cleat pedals. The maximum plantarflexion timing with the flat and clip pedals was faster than that of the flat pedal. Electromyography revealed that the vastus lateralis muscle activity with the flat pedal was greater than that with the clip and cleat pedals. Conclusion: With the clip and cleat pedals, the joint movements were limited but the muscle activities were more effective than that with the flat pedal. The novice cannot benefit from the clip and cleat pedals regardless of their pull-up pedaling advantage. Therefore, the novice should perform the skilled pulling-up pedaling exercise in order to benefit from the clip and cleat pedals in terms of pedaling performance.