• Title/Summary/Keyword: Shoe upper

Search Result 31, Processing Time 0.03 seconds

Development of the CAM system for 5-axis automatic shoe roughing (5축 러핑 전용 CAM 시스템 개발)

  • 강동배;손성민;김화영;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1227-1230
    • /
    • 2003
  • A roughing process is one of the most important and indispensable shoe manufacturing processes of various types of shoes. This basic process to rough the upper of the shoe is studied to improve the productivity and to reduce the processing time. In this study, the CAM system for shoe roughing is developed. The B-spline surface generated by the developed CAM system ignores the small inclinations of the real roughing surface because the developed roughing tool has potential to rough the roughing surface of the shoe properly. The roughing tool roughs the roughing surface using its side along the generated tool paths. The generated NC codes were applied to 5-axis polishing machine for the test. Experimental results show good evaluation result. The upper of the shoe is roughed properly along the roughing path line and the roughing surface was good to cement the outsole of the shoe.

  • PDF

Development of CAM system for 5-axis automatic roughing machine Based on Reverse Engineering (역공학 기반 5축 신발 러핑용 CAM 시스템 개발)

  • Kim Hwa Young;Son Seong Min;Ahn Jung Hwan;Kang Dong Bae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.122-129
    • /
    • 2005
  • Shoe with leather upper such as safety and golf shoe requires a roughing process where the upper is roughed fur helping outsole to be cemented well. It is an important and basic process for production of leather shoe but is not automated yet. Thus, there are problems that the defect rate is high and the quality of roughed surface is not uniform. In order to solve such problems, the interest in automation of roughing process is being increased and this paper introduces CAM system for 5-axis automatic roughing machine as one part of automation of roughing process. The CAM system developed interpolates a B-spline curve using points measured from the Roughing Path Measurement System. The B-spline curve is used to generate the tool path and orientation data fer a roughing tool which has not only stiffness but also flexibility to rough the inclined surface efficiently. For productivity, the upper of shoe is machined by side of the roughing tool and tool offset is applied to the roughing tool for machining of inclined surface. The generated NC code was applied to 5-axis polishing machine for the test. The upper of shoe was roughed well along the roughing path data from CAM and the roughed surface was proper fur cementing of the outsole.

Measurement of Tensile Relaxation of Leather for Shoe Uppers (구두 상부용 가죽의 인장 회복량 측정실험)

  • Lee, Jeongmin;Bae, Mincheol;Kim, Yungwoo;Choi, Seongmyung;Baek, Sungkwan;Lee, Hyoungwook
    • Journal of Institute of Convergence Technology
    • /
    • v.7 no.1
    • /
    • pp.7-10
    • /
    • 2017
  • In general, the shoe stretcher is utilized to stretching the leather of shoe upper in the longitudinal direction. In the capstone design class, we tried to make a shoe leather stretcher for the ball of foot. Since a natural cow leather was recovered in length according to relaxation time after stretched, it was difficult to predict the initial amount of set up of stretching. In this paper, tensile and relaxation experiments were conducted in order to predict the amount of initial stretching for appropriate tensile length. Apparatus of leather stretching was designed and strains of leather were measured according to relaxation times of 12, 18, 24 hours after stretching of 24 hours. It was revealed that the ratio of the final relaxed strain and the initial applied strain was about 0.404 with R-square of 0.990 for a shoe cow leather.

A Study on the Standardization of Fuse Process for Automation of Manufacturing (공장자동화를 위한 신발갑피 Fuse공정 표준화 설계 연구)

  • Kim, Hyun-Hee;Lee, Kyung-Chang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.2
    • /
    • pp.235-241
    • /
    • 2019
  • The shoe manufacturing process is very low compared to other industries due to the labor-intensive process. As automation and smart factories are becoming more and more automated, changes in the shoe manufacturing process are also needed. In this paper, we want to standardize the fuse manufacturing process by modularizing it. First, we defined the terms of shoeupper and fuse process, the shoe upper fuse process by function and classified it as a modular process. The fuse process can be modularized with pattern supply module, pattern recognition module, pattern laminate module, pattern waiting module, adhesion module, heat pressing module, transmission module, etc.

A Study on Surface Flattening for 3 Dimensional Shoe Pattern Design (신발패턴의 3차원 설계를 위한 곡면의 평면전개에 관한 연구)

  • Song S. J.;Kim S. H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.3
    • /
    • pp.266-275
    • /
    • 2004
  • In this paper, a method for generating the planar developments of three-dimensional shoe upper surfaces is proposed. This method is based on the optimization technique minimizing the geometric error occurred on the developed planar surface. Additionally, a rapid mapping algorithm to transform a curve on flattened plane to original surface (or vice versa) is proposed. These techniques are implemented on the 2D/3D integrated shoe design system. Using this system, a prototype running shoe can be designed more precisely and can be manufactured more quickly.

A study on Development of Footwear Shape Scanner for Off-Line Robot Path Programming

  • Lho, Tae-Jung;Song, Se-Hoon;Ju, Hyun-Woo;Lee, Jung-Wook;Cho, Jae-Kung;Ahn, Hee-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.808-812
    • /
    • 2003
  • We need a lot of manpower and we can cut down a labor cost by applying industrial robots the footwear bonding automation process. In this study, we suggest how to program off-line robot path along a shoe's outsole shape in the footwear bonding process by 5-axis microscribe system like robot arms. This microscribe system development consists 5-axis microscribe mechanics, signal processing circuit, and PC with software. It is the system for making database of a shoe's outsole through the movement of a microscribe with many joints. To do this, first read 5-encoders' pulse values while a robot arm points a shoe's outsole shape from the initial status. Then, calculate a relative shoe's outsole by Denavit-Hatenberg's (D-H) direct Kinematics of known length of links and coordinate values. Next, calculate the encoders' pulse values of the robot arm's rotation and transmitting the angle pulse values to the PC through a circuit. Finally, it is able to display a shoe's outsole at real-time by computing the Denvavit-Hantenberg's (D-H) direct kinematics in the PC. With the coordinate values calculated above, we can draw a bonding gauge-line on the upper. Also, we can make off-line robot path programming compute a shoe's bonding area on the upper. These results will be effectively applied for programming a robot path on off-line and automatically.

  • PDF

Influences of Shoe Heel Height on Isometric Shoulder Abductor Strength and EMG Activities of Selected Shoulder Muscles (신발 뒤굽 높이가 등척성 어깨 외전 근력과 근전도 활동에 미치는 영향)

  • Oh, Duck-Won
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.10 no.2
    • /
    • pp.9-16
    • /
    • 2015
  • PURPOSE: The objective of this study was to identify the effects of shoulder abduction strength and EMG activities of the selected scapular and shoulder muscles during isometric shoulder abduction. METHODS: Thirty-four healthy young females were recruited for this study. Surface EMG equipment with inline force sensor was used to determine the shoulder abductor strength and the activity of the serratus anterior (SA), upper trapezius (UT), lower trapezius (LT), and middle deltoid (MD) during three shoe heel height conditions: (1) barefoot, (2) 3-cm shoe heel height, and (3) 7-cm shoe heel height. RESULTS: Isometric shoulder strength showed statistically significant difference among the conditions (p<0.05), and post-hoc test showed lower strength during the 7-cm condition ($49.98{\pm}17.56kg$) than during the barefoot ($44.97{\pm}20.15kg$) and 3-cm conditions ($36.59{\pm}17.07kg$). Furthermore, EMG activities of the SA, UT, and MD appeared to be statistically significantly different among the conditions, with lower values in the 7-cm condition compared to the barefoot condition (p<0.05). EMG ratios (MD/UT and SA/UT) were lower during the 7-cm condition than during the barefoot condition (p<0.05). CONCLUSION: These findings suggest that isometric shoulder abduction strength and EMG activities of scapular and shoulder muscles may be adversely changed with increasing shoe heel height.

Influence of the Midsole Hardness on Shock Absorption along the Human Body during Running (달리기 중 신발 중저의 경도가 인체를 따라 흡수되는 충격에 미치는 영향)

  • Lee, Yong-Ku;Kim, Yoon-Hyuk
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.1
    • /
    • pp.33-39
    • /
    • 2010
  • During running, the human body experiences repeated impact force between the foot and the ground. The impact force is highly associated with injury of the lower extremity, comfort and running performance. Therefore, shoemakers have developed shoes with various midsole properties to prevent the injury of lower extremity, improve the comfort and enhance the running performance. The purpose of this study is to investigate influence of midsole hardness on shock absorption along the human body during running. Thirty two expert runners consented to participate in the study and ran at a constant speed with three different pairs of shoes with soft, medium and hard midsole respectively. Using accelerometers we measured the shock absorption from shoe heel to cervical vertebral column. In conclusion, at the shoe heel, shock was the greatest with the hard midsole. However because most shock was absorbed between shoe heel and the knee, notable influence of midsole was not detected upper knee. At shoe heel, regardless of midsole hardness, the shock of younger female was the greatest. The authors expect to apply this result for providing a guideline for utilizing proper midsole hardness for manufacturing age and gender-specific shoe.

CAD Based Robot Off-line Programming for Shoe Adhesive Application System (신발 접착제 도포 시스템을 위한 CAD 기반 로봇 오프라인 프로그래밍)

  • 윤중선;차동혁;김진영
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.7
    • /
    • pp.643-648
    • /
    • 2004
  • Most of shoes manufacturing processes are not yet automated, which puts restrictions on the increase of productivity. Among them, adhesive application processes particularly are holding the most workers and working hours. In addition, its working conditions are very poor due to the toxicity of adhesive agents. In case of automating adhesive application processes by using robots, the robot teaching by playback is difficult to produce high productivity because the kinds of shoes to be taught mount up to several thousands. Therefore, it is essential to generate the robot working paths automatically according to the kind, the size, and the right and left of shoes, and also to teach them to the robot automatically. This study deals with automated adhesive spraying to shoe outsoles and uppers by using a robot, and develops the program to generate three-dimensional robot working paths off-line based on CAD data. First, the three-dimensional data of an outsole outline or an upper profiling line are extracted from the two-dimensional CAD drawing file or the three-dimensional scanner. Next, based on the extracted data and the nozzle conditions for adhesive spraying, a robot working path is generated automatically. This research work is the core in automating adhesive spraying processes, and will do much for increasing productivity of shoes manufacturing.

Development of High-strength Cotton Fabrics for Upper of Shoes to Improve Fashionability (패션성 향상을 위한 신발갑피용 고강도 면직물 개발)

  • Lee, Jae-Ho
    • Fashion & Textile Research Journal
    • /
    • v.21 no.2
    • /
    • pp.203-208
    • /
    • 2019
  • This paper considers the moisture permeability and fashion in the upper fabrics of cotton fabric shoes woven into various tissues and properties measured to examine the use as upper fabrics. We measured the tissues of the manufactured upper fabric are 1/3 twill, $4{\times}4$ weft rib, Maya, Triple, Deformed twill design (DTD), Diamond tissues and tear strength, tensile strength, breaking elongation, stretching under load at 100N, stitch tear resistance, and fastness. In the case of $4{\times}4$ weft rib, the tear strength and tensile strength were excellent; however, the elongation and stitch tear resistance at 100N load were less than the standard value. DTD fabrics are characterized by physical properties in the warp direction that are superior to those in the weft direction; however, the tear strength and tensile strength in the weft direction are less than the standard value. The 1/3 twill fabrics showed high tensile strength value and stitch tear resistance value in the warp direction; however, toughness, the main property of the shoe upper, was below the standard value. Triple and diamond fabrics, which have a significant effect on the performance of the shoe upper fabric, also had less than the standard value of tear strength. Maya upper fabric for shoes has better properties than other upper fabrics except for the elongation at break, and the stitch tear resistance has a value of 178% in the warp direction and 214% in the weft direction compared to the standard value. Therefore, the Maya fabric showed the possibility of being used as an upper textile for shoes.