• Title/Summary/Keyword: Shock-shock interaction

Search Result 372, Processing Time 0.036 seconds

Dynamic study on the Interaction between Terminal Shock train and Flame Fluctuation of Supersonic Propulsion System (초음속 엔진의 흡입구 종말충격파와 연소실 화염의 상호간섭 동적연구)

  • Yeom, Hyo-Won;Kim, Sun-Kyeong;Kim, Seong-Jin;Sung, Hong-Gye;Gil, Hyun-Yong;Yoon, Hyun-Gull
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.79-82
    • /
    • 2009
  • Unsteady numerical analysis of an entire supersonic propulsion system from intake to nozzle was performed to study dynamic interaction between terminal shock in the intake and flame in the combustor. Both acceleration and cruise flight-modes were considered. Acoustic mode of the entire engine for both flight-modes were investigated by detail analysis of pressure fluctuation at each location of engine.

  • PDF

Hydrodynamic Analysis on Shock-induced Detonation in Pyrotechnic Initiator (파이로테크닉 착화기의 충격파 전달에 의한 폭굉 반응 해석)

  • Kim, Bohoon;Kang, Wonkyu;Jang, Seung-gyo;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.5
    • /
    • pp.19-30
    • /
    • 2016
  • We presented a hydrodynamic modeling necessary to accurately reproduce shock-induced detonation of pyrotechnic initiator. The methodology for such numerical prediction of shock propagation is quite straight forward if the models are properly implemented and solved in a well-formulated shock physics code. A series of SSGT(Small Scale Gap Test) and detailed hydrodynamic simulation are conducted to quantify the shock sensitivity of an acceptor that contains 97.5% RDX. A TBI(Through Bulkhead Initiator) system, consisting of a train configuration of Donor(HNS+HMX) - Bulkhead(STS) - Acceptor(RDX), were investigated to further validate the interaction between energetic and non-reactive materials for predicting the detonating response for successful operation of such small pyro device.

Computational Study on Unsteady Mechanism of Spinning Detonations

  • Matsuo, Akiko;Sugiyama, Yuta
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.367-373
    • /
    • 2008
  • Spinning detonations propagating in a circular tube were numerically investigated with a one-step irreversible reaction model governed by Arrhenius kinetics. Activation energy is used as parameter as 10, 20, 27 and 35, and the specific heat ratio and the heat release are fixed as 1.2 and 50. The time evolution of the simulation results was utilized to reveal the propagation mechanism of single-headed spinning detonation. The track angle of soot record on the tube wall was numerically reproduced with various levels of activation energy, and the simulated unique angle was the same as that of the previous reports. The maximum pressure histories of the shock front on the tube wall showed stable pitch at Ea=10, periodical unstable pitch at Ea=20 and 27 and unstable pitch consisting of stable, periodical unstable and weak modes at Ea=35, respectively. In the weak mode, there is no Mach leg on the shock front, where the pressure level is much lower than the other modes. The shock front shapes and the pressure profiles on the tube wall clarified the mechanisms of these stable and unstable modes. In the stable pitch at Ea=10, the maximum pressure history on the tube wall remained nearly constant, and the steady single Mach leg on the shock front rotated at a constant speed. The high and low frequency pressure oscillations appeared in the periodical unstable pitch at Ea=20 and 27 of the maximum pressure history. The high frequency was one cycle of a self-induced oscillation by generation and decay in complex Mach interaction due to the variation in intensity of the transverse wave behind the shock front. Eventually, sequential high frequency oscillations formed the low frequency behavior because the frequency behavior was not always the same for each cycle. In unstable pitch at Ea=35, there are stable, periodical unstable and weak modes in one cycle of the low frequency oscillation in the maximum pressure history, and the pressure amplitude of low frequency was much larger than the others. The pressure peak appeared after weak mode, and the stable, periodical unstable and weak modes were sequentially observed with pressure decay. A series of simulations of spinning detonations clarified that the unsteady mechanism behind the shock front depending on the activation energy.

  • PDF

Computational Study on Unsteady Mechanism of Spinning Detonations

  • Matsuo, Akiko;Sugiyama, Yuta
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.367-373
    • /
    • 2008
  • Spinning detonations propagating in a circular tube were numerically investigated with a one-step irreversible reaction model governed by Arrhenius kinetics. Activation energy is used as parameter as 10, 20, 27 and 35, and the specific heat ratio and the heat release are fixed as 1.2 and 50. The time evolution of the simulation results was utilized to reveal the propagation mechanism of single-headed spinning detonation. The track angle of soot record on the tube wall was numerically reproduced with various levels of activation energy, and the simulated unique angle was the same as that of the previous reports. The maximum pressure histories of the shock front on the tube wall showed stable pitch at Ea=10, periodical unstable pitch at Ea=20 and 27 and unstable pitch consisting of stable, periodical unstable and weak modes at Ea=35, respectively. In the weak mode, there is no Mach leg on the shock front, where the pressure level is much lower than the other modes. The shock front shapes and the pressure profiles on the tube wall clarified the mechanisms of these stable and unstable modes. In the stable pitch at Ea=10, the maximum pressure history on the tube wall remained nearly constant, and the steady single Mach leg on the shock front rotated at a constant speed. The high and low frequency pressure oscillations appeared in the periodical unstable pitch at Ea=20 and 27 of the maximum pressure history. The high frequency was one cycle of a self-induced oscillation by generation and decay in complex Mach interaction due to the variation in intensity of the transverse wave behind the shock front. Eventually, sequential high frequency oscillations formed the low frequency behavior because the frequency behavior was not always the same for each cycle. In unstable pitch at Ea=35, there are stable, periodical unstable and weak modes in one cycle of the low frequency oscillation in the maximum pressure history, and the pressure amplitude of low frequency was much larger than the others. The pressure peak appeared after weak mode, and the stable, periodical unstable and weak modes were sequentially observed with pressure decay. A series of simulations of spinning detonations clarified that the unsteady mechanism behind the shock front depending on the activation energy.

  • PDF

A Study on Shock-induced Detonation in Gap Test (충격 전달에 의한 Gap Test의 폭굉 반응 해석)

  • Kim, Bohoon;Kang, Wonkyu;Jang, Seung-gyo;Park, Jungsu;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.75-85
    • /
    • 2016
  • A pyrotechnic system consisting of donor/acceptor pair separated by a gap relies on shock attenuation characteristics of the gap material and shock sensitivity of the donor and acceptor charges. Despite of its common use, numerical study of such pyrotechnic train configuration is seldom reported because proper modeling of the full process requires precise capturing of the shock wave attenuation in the gap prior to triggering a full detonation of high explosive and accurate description of the high strain rate dynamics of the explosively loaded inert confinements. We apply a Eulerian level-set based multimaterial hydrocode with reactive flow models for pentolite donor and heavily aluminized RDX as acceptor charge. The complex shock interaction, critical gap thickness, acoustic impedance, and go/no-go characteristics of the gap test are quantitatively investigated.

Study of the Kinetic Effects on Relativistic Unmagnetized Shocks using 3D PIC Simulations

  • Choi, Eun Jin;Min, Kyoung W.;Choi, Cheongrim;Nishikawa, Ken-Ichi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.101.2-101.2
    • /
    • 2012
  • Shocks are ubiquitous in astrophysical plasmas: bow shocks are formed by the interaction of solar wind with planetary magnetic fields, and supernova explosions and jets produce shocks in interstellar and intergalactic spaces. The global morphologies of these shocks are usually described by a set of magnetohydrodynamic (MHD) equations which tacitly assumes local thermal equilibrium, and the resulting Rankine-Hugoniot shock jump conditions are applied to obtain the relationship between the upstream and downstream physical quantities. While thermal equilibrium can be achieved easily in collisional fluids, it is generally believed that collisions are infrequent in astrophysical settings. In fact, shock widths are much smaller than collisional mean free paths and a variety of kinetic phenomena are seen at the shock fronts according to in situ observations of planetary shocks. Hence, both the MHD and kinetic equations have been adopted in theoretical and numerical studies to describe different aspects of the physical phenomena associated with astrophysical shocks. In this paper, we present the results of 3D relativistic particle-in-cell (PIC) simulations for ion-electron plasmas, with focus on the shock structures: when a jet propagates into an unmagnetized ambient plasma, a shock forms in the nonlinear stage of the Weibel instability. As the shock shows the structures that resemble those predicted in MHD systems, we compare the results with those predicted in the MHD shocks. We also discuss the thermalization processes of the upstream flows based on the time evolutions of the phase space and the velocity distribution, as well as the wave spectra analyses.

  • PDF

Evolution of particle acceleration and instabilities in galaxy cluster shocks

  • van Marle, Allard Jan;Ryu, Dongsu;Kang, Hyesung;Ha, Ji-Hoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.42.2-43
    • /
    • 2018
  • When galaxy clusters interact, the intergalactic gas collides, forming shocks that are characterized by a low sonic Mach number (~3) but a comparatively high Alfvenic Mach number (~30). Such shocks behave differently from the more common astrophysical shocks, which tend to have higher sonic Mach numbers. We wish to determine whether these shocks, despite their low sonic Mach number, are capable of accelerating particles and thereby contributing to the cosmic ray spectrum. Using the PIC-MHD method, which separates the gas into a thermal and a non-thermal component to increase computational efficiency, and relying on existing PIC simulations to determine the rate at which non-thermal particles are injected in the shock, we investigate the evolution of galaxy cluster shocks and their ability to accelerate particles. Depending on the chosen injection fraction of non-thermal particles into the shock, we find that even low-Mach shocks are capable of accelerating particles. However, the interaction between supra-thermal particles and the local magnetic field triggers instabilities and turbulence in the magnetic field. This causes the shock to weaken, which in turn reduces the effectiveness of the supra-thermal particle injection. We investigate how this influences the shock evolution by reducing the particle injection rate and energy and find that a reduction of the particle injection fraction at this stage causes an immediate reduction of both upstream and downstream instabilities. This inhibits particle acceleration. Over time, as the instabilities fade, the shock surface straightens, allowing the shock to recover. Eventually, we would expect this to increase the efficiency of the particle injection and acceleration to previous levels, starting the same series of events in an ongoing cycle of increasing and decreasing particle acceleration.

  • PDF

Contribution of institutional shocks to Tunisian macroeconomic fluctuations: Structural VAR approach

  • Zouhaier, Hadhek
    • East Asian Journal of Business Economics (EAJBE)
    • /
    • v.1 no.1
    • /
    • pp.8-16
    • /
    • 2013
  • Purpose: The objective of this paper is to identify and assess the contribution of budgetary, monetary and institutional shocks affecting the Tunisian economy over the period 1976-2003. The methodology used is vector autoregressive models and structural recent techniques for the analysis of time series related. The empirical results show a significant relationship between the supply shock and institutions on the one hand, and between institutional shocks and economic activity on the other hand. Research Design, Data and Methodology: As part of this section we will try to identify and assess the contribution of various shocks to macroeconomic variables' fluctuations for the Tunisian economy. The study period is: 1976-2003 and observations are annual. Results: The real business cycle theory argues that fluctuations in aggregate economic activity are the result of the interaction of the only real factors namely agents' preferences, technological opportunities, factor endowments and possibly certain institutional constraints. Conclusions: The lowest contribution to the variability of these rights is the monetary shock. As for "civil liberties", the largest share of their variability is the shock relating to the "political rights" during the first four periods .

COMPARATIVE STUDY ON THE INTERPOLATION METHODS FOR THE AEROELASTIC ANALYSIS (공탄성 해석을 위한 보간 기법 비교 연구)

  • Lee, Jae-Hun;Kwon, Jang-Hyuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.141-144
    • /
    • 2005
  • The fluid-structure interaction analysis such as a static aeroelastic analysis requires the result of each analysis as an input to other analysis. Usually the grids for the fluid analysis and the structural analysis are different, so the results should be transformed properly for each other. The Infinite Plate Spline(IPS) and the Thin Plate Spline(TPS) are used in interpolating the displacement and the pressure. In this study, such interpolation methods are compared with kriging which provides a precise response surface. The static aeroelastic analysis is performed for the supersonic flow field with shock waves and the pressure field is interpolated by the TPS and kriging. The TPS shows tendency to weaken the shock stength, whereas kriging preserves the shock strength.

  • PDF

Multiscale modeling of the anisotropic shock response of β-HMX molecular polycrystals

  • Zamiri, Amir R.;De, Suvranu
    • Interaction and multiscale mechanics
    • /
    • v.4 no.2
    • /
    • pp.139-153
    • /
    • 2011
  • In this paper we develop a fully anisotropic pressure and temperature dependent model to investigate the effect of the microstructure on the shock response of ${\beta}$-HMX molecular single and polycrystals. This micromechanics-based model can account for crystal orientation as well as crystallographic twinning and slip during deformation and has been calibrated using existing gas gun data. We observe that due to the high degree of anisotropy of these polycrystals, certain orientations are more favorable for plastic deformation - and therefore defect and dislocation generation - than others. Loading along these directions results in highly localized deformation and temperature fields. This observation confirms that most of the temperature rise during high rates of loading is due to plastic deformation or dislocation pile up at microscale and not due to volumetric changes.