• 제목/요약/키워드: Shock-Boundary layer interaction

검색결과 110건 처리시간 0.021초

A Numerical Study of Shock Wave/Boundary Layer Interaction in a Supersonic Compressor Cascade

  • Song, Dong-Joo;Hwang, Hyun-Chul;Kim, Young-In
    • Journal of Mechanical Science and Technology
    • /
    • 제15권3호
    • /
    • pp.366-373
    • /
    • 2001
  • A numerical analysis of shock wave/boundary layer interaction in transonic/supersonic axial flow compressor cascade has been performed by using a characteristics upwind Navier-Stokes method with various turbulence models. Two equation turbulence models were applied to transonic/supersonic flows over a NACA 0012 airfoil. The results are superion to those from an algebraic turbulence model. High order TVD schemes predicted shock wave/boundary layer interactions reasonably well. However, the prediction of SWBLI depends more on turbulence models than high order schemes. In a supersonic axial flow cascade at M=1.59 and exit/inlet static pressure ratio of 2.21, k-$\omega$ and Shear Stress Transport (SST) models were numerically stables. However, the k-$\omega$ model predicted thicker shock waves in the flow passage. Losses due to shock/shock and shock/boundary layer interactions in transonic/supersonic compressor flowfields can be higher losses than viscous losses due to flow separation and viscous dissipation.

  • PDF

The Effects of Nonequilibrium Condensation on Shock/Boundary Layer Interaction

  • Kim, Heuy-Dong;Lee, Kwon-Hee;Toshiaki. Setoguchi
    • Journal of Mechanical Science and Technology
    • /
    • 제15권6호
    • /
    • pp.788-795
    • /
    • 2001
  • The effects of nonequilibrium condensation on the shock boundary layer interaction over a transonic bump model were investigated experimentally and numerically. An experiment was conducted using a supersonic indraft wind tunnel. A droplet growth equation was incorporated into two-dimensional Navier-Stokes equation systems. Computations were carried out using a third-order MUSCL type TVD finite-difference scheme with a second-order fractional time step. Computation compared with the experimental results. Nonequilibirum condensation suppressed the boundary layer separation and the pressure fluctuations due to the shock boundary layer interaction. Especially the nonequilbrium condensation was helpful to suppress the high frequency components of the pressure fluctuations.

  • PDF

비평형응축이 충격파와 경계층의 간섭에 미치는 영향 (The Effect of Nonequilibrium Condensation on Shock/Boundary Layer Interaction)

  • 김희동;이권희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.544-549
    • /
    • 2000
  • The effects of nonequilibrium condensation on the shock boundary layer interaction over a transonic bump model were investigated experimentally and numerically. An experiment was conducted using a supersonic indraft wind tunnel. A droplet growth equation was incorporated into two-dimensional Navier-Stokes equation systems. Computations were carried out using a third-order MUSCL type TVD finite-difference scheme with a second-order fractional time step. Computations compared with the experimental results. Nonequilibirum condensation suppressed the boundary layer separation and the pressure fluctuations due to the shock boundary layer interaction. Especially the nonequilibrium condensation was helpful to suppress the high frequency components of the pressure fluctuations.

  • PDF

초음속 연소 탄체 가속기 내의 폭굉파 진행에 관한 수치해석 (Numerical Analysis of Detonation Wave Propagation in SCRam-Accelerator)

  • 최정열;정인석;이수갑
    • 한국연소학회지
    • /
    • 제1권1호
    • /
    • pp.83-91
    • /
    • 1996
  • A numerical study is carried out to examine the ignition and propagation process of detonation wave in SCRam-accelerator operating in superdetonative mode. The time accurate solution of Reynolds averaged Navier-Stokes equations for chemically reacting flow is obtained by using the fully implicit numerical method and the higher order upwind scheme. As a result, it is clarified that the ignition process has its origin to the hot temperature region caused by shock-boundary layer interaction at the shoulder of projectile. After the ignition, the oblique detonation wave is generated and propagates toward the inlet while constructing complex shock-shock interaction and shock-boundary layer interaction. Finally, a standing oblique detonation wave is formed at the conical ramp.

  • PDF

Design of Smart flap actuators for swept shock wave/turbulent boundary layer interaction control

  • Couldrick, Jonathan;Shankar, Krishnakumar;Gai, Sudhir;Milthorpe, John
    • Structural Engineering and Mechanics
    • /
    • 제16권5호
    • /
    • pp.519-531
    • /
    • 2003
  • Piezoelectric actuators have long been recognised for use in aerospace structures for control of structural shape. This paper looks at active control of the swept shock wave/turbulent boundary layer interaction using smart flap actuators. The actuators are manufactured by bonding piezoelectric material to an inert substrate to control the bleed/suction rate through a plenum chamber. The cavity provides communication of signals across the shock, allowing rapid thickening of the boundary layer approaching the shock, which splits into a series of weaker shocks forming a lambda shock foot, reducing wave drag. Active control allows optimum control of the interaction, as it would be capable of positioning the control region around the original shock position and unimorph tip deflection, hence mass transfer rates. The actuators are modelled using classical composite material mechanics theory, as well as a finite element-modelling program (ANSYS 5.7).

초음속 디퓨져에서 발생하는 충격파 진도의 피동제어 (A passive control on shock oscillations in a supersonic diffuser)

  • 김희동;송미일태
    • 대한기계학회논문집B
    • /
    • 제20권3호
    • /
    • pp.1083-1095
    • /
    • 1996
  • Shock wave/boundary layer interaction frequently causes the shock wave to oscillate violently and thus the global flow field to unstabilize. In order to stabilize the shock wave system in the diffuser of a supersonic wind tunnel, the present study attempted to control the shock oscillations by using a passive control. A porous wall with the porosity of 19.6% was mounted on a shallow cavity. Experiment was made by means of schlieren optical observation and wall pressure measurements. The flow Mach number just upstream the shock system and Reynolds number based on the turbulent boundary layer thickness were 2.1 and 1.8 * 10$\^$6/, respectively. The results show that the present passive control method on the shock wave/boundary layer interaction in the supersonic diffuser can significantly suppress the oscillations of shock system, especially when the shock system locates at the porous wall.

SHOCK WAVE BOUNDARY LAYER INTERACTION STUDIES IN CORNER FLOWS

  • Lee Hee-Joon;Vos Jan B.
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2004년도 한국우주과학회보 제13권2호
    • /
    • pp.328-331
    • /
    • 2004
  • Shock wave boundary layer interactions can make flows around a vehicle be very high pressure and temperature due to pass shock waves in small areas of the hypersonic vehicle. These phenomena can affect a critical problem in the design of hypersonic vehicles. To research the effect of shock wave boundary layer interactions, comer flows were studied in this paper using numerical studies with the NSMB (Navier-Stokes Multi Block) solver and then comparing corresponding numerical results with experimental data of the Huston High Speed Flow Field Workshop II. The mach number of flows is 12.3 in comer flows. The comparison with the computational result is presented based on diverse numerical schemes. Good agreement is obtained.

  • PDF

수직충격파와 난류경계층의 간섭유동의 피동제어에 관한 수치 해석 (Computations on Passive Control of Normal Shock-Wave/Turbulent Boundary-Layer Interactions)

  • 구병수;김희동
    • 한국추진공학회지
    • /
    • 제5권3호
    • /
    • pp.25-32
    • /
    • 2001
  • 본 연구에서는 2차원 압축성 Navier-Stokes 방정식을 이용하여, 약한 수직충격파와 난류 경계층의 간섭현상에 대한 피동제어 유동장을 수치계산법으로 조사하였다. 벽 내부에 공동을 가지는 다공벽을 사용하여 충격파와 난류경계층간 상호간섭을 제어하였다. 본 연구로부터 $\lambda$형 충격파의 하류쪽 가지를 중심으로 하여, 그 하류에서는 주유동이 공동내부로 또 그 상류에서는 공동내부로부터 주유동쪽으로 피이드백되는 유동을 관찰하였으며, 다공벽의 구멍을 통하는 유동은 초크하지 않는다는 것을 알았다.

  • PDF

유동방향의 와류가 충격파와 경계층의 상호간섭에 미치는 영향 (Influence of Streamwise Vortices on Normal Shock-Wave/Boundary Layer Interaction)

  • 김중배;;김희동
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제21회 추계학술대회 논문집
    • /
    • pp.91-94
    • /
    • 2003
  • An experimental study has been carried out in a supersonic blow-down wind tunnel for examining the influence of streamwise vortices on normal shock-wave/boundary layer interaction. It has been reported by the earlier investigator the streamwise vortices generated by the blowing jets can significantly suppress the shock-induced separation and reduce the wave drag. The blowing jets generate the streamwise vortices with 45$^{\circ}$ angle in the spanwise direction. The shock waves are visualized by a Schlieren optical system. Appropriate measurement systems are provided for the characterization of shock wave/boundary layer interaction. The chamber pressure ratio and blowing pressure ratio are varied from 1.5 to 2.4 and 1.0 to 2.0 respectively.

  • PDF

AERODYNAMIC DESIGN OF A BUMP-TYPE INLET

  • Kim, Sang-Dug;Song, Dong-Joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.262-267
    • /
    • 2008
  • Numerical investigations were performed with an external-compression inlet with a three-dimensional bump at Mach 2 to scrutinize the geometrical effects of the bump in controlling the interaction of a shock wave with a boundary layer. The inlet was designed for two oblique shock waves and a terminal normal shock wave followed by a subsonic diffuser, with a circular cross-section throughout. The bump-type inlet that replaced the aft ramp of the conventional ramp-type inlet was optimized with respect to the inlet performance parameters as well as compared with the conventional ramp-type inlet. The current numerical simulations showed that a bump-type inlet can provide an improvement in the total pressure recovery downstream of the shock wave/boundary layer interaction over a conventional ramp-type inlet.

  • PDF