• 제목/요약/키워드: Shock-Absorber

검색결과 177건 처리시간 0.025초

자동차용 충격흡수기의 데이터베이스 시스템 구축에 관한 연구 (A Study on the Construction of Database System for Automotive Shock Absorber)

  • 정영대;박재우;김명호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.227-231
    • /
    • 1995
  • This paper describes a basic programming and interfacing modele which can link DataBase form experiments and dynamic analysis program of chock absorber within the limit of adequate reliability. The system developed can provid a user specific Database of shock absorber within the required damping performance and endurable tolerance, thus show a good application possibilities in commercial vehicle design.

  • PDF

마찰용접을 이용한 고강도 쇼크업소버 베이스 어셈블리의 제조 기술 개발 (Development of a High Strength Manufacturing Technology for the Shock Absorber Base Assembly Using Friction Welding)

  • 정호연
    • 산업경영시스템학회지
    • /
    • 제34권1호
    • /
    • pp.90-96
    • /
    • 2011
  • The shock absorber base assembly is one of the parts in the shock absorber equipment that controls the vehicle movement. It absorbs the shock and vibration to guarantee riding stability and comfort. It demands strength, reliability and strict airtightness of the welded section because the shock absorber base assembly is a container which resists pressure and needs durability by being filled with gas and oil. However, the current engineering needs a lot of production time, has a high cost and shows a low production rate. These problem due to the eight production processes, four of which are spot welding, reinforcement welding like metal active welding (MAG), prior process of the base assembly cap and tube for precision and pressing. We will analyze the manufacturing processes of the base assembly and suggest an improved manufacturing method that uses frictional welding. The results will show that the new method of the frictional welding is better than the previous welding technique. Through the use of this concept of frictional welding, the welding conjunction will be strengthened, measurements will be more precise, and the cost and the number of processes will be reduced.

인체 진동을 고려한 최적 현가장치의 선정에 관한 비선형 모의실험 (The Nonlinear Simulation on the Selection of Suitable Suspension Considering Human Vibration)

  • 김진기;홍동표;최만용
    • 소음진동
    • /
    • 제10권2호
    • /
    • pp.247-253
    • /
    • 2000
  • The evaluation of the ride quality had been performed by the subjective method before ISO2631(International Organization for Stadard 2631) and BS6841(British Standard 6841) was precented, but many research programs have been performed by the objective method after that. On this study, the ride quality was evaluated related with the objective method which considered the vibration which the human body feels on the driver's seat while driving on the road. In particular, we made the shock absorber nonlinear model and also selected the suitable shock absorber in the part of the vibration which the human body feels into the simulation. The shock absorber of suspension was dealt with 3 cases respectively with the front wheel and rear wheel. The vibration of the car driving on the road can be transferred to the wheel, the suspension, the vehicle body, the seat and the human body. The signal which was gained from the seat(hip) and the floor(foot) of the human body was changed to the vibration signal which the human body felt through using the frequency weighting function. And then the performance of the shock absorber was calculated through the statistic processing.

  • PDF

반능동형 충격흡수기의 연속가변 감쇠특성에 대한 CFD 해석 (CFD Analysis on the Continuous and Variable Damping Characteristics of a Semi-Active Shock Absorber)

  • 윤준원
    • 한국자동차공학회논문집
    • /
    • 제12권2호
    • /
    • pp.101-108
    • /
    • 2004
  • Recently, a semi-active shock absorber has been taking interest because of its low cost and simple structure than the active one. CFD analysis has been conducted to investigate the continuous and variable damping characteristics of the semi-active shock absorber. Also, the flow resistance characteristics of a spool valve has been examined to identify individual parameters(namely, exponent and discharge coefficient) of pressure-flow rate relation needed for the accurate valve modeling. The flow field in the damping valve was simulated using the commercial code, CFX-5.3. The numerical results showed reasonable agreement with the experimental outputs. The pressure distribution with the variation of spool opening length and volume flow rate were discussed in detail. And the continuous and variable damping performance was found clearly. The individual parameters of spool valve were obtained as a function of orifice area. The exponent and discharge coefficient were fitted in with the first and the third polynomial respectively.

충격 흡수기 피스톤의 대체 개발에 관한 기초적 연구 (A Basic Study on the Alternative Development of Piston for Shock Absorber)

  • 김영호;배원명;임동주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.121-124
    • /
    • 1995
  • This study is aimed at cutting down the cost, weight and improving process by replacing the traditional sintered piston of the shock absorber with engineering plastic piston by means of injection molding. To obtain the high mechanical properties, glass fiber material was selected adequately and forming analysis considering fiber orientation was made to remove the forming deficit fators and to construct the optimal runner system. In addition, structural analysis using commercial software MOLDFLOW was performed under near conditions in actual driving of automotive. The results from the internal pressure process test, oilproof test based on forming, structural and strength analysis shows that hydraulic close performance and damping force considering the out of roundness of shock absorber are relatively good.

  • PDF

연속 가변형 충격흡수기의 감쇠성능 해석 (Damping performance Analysis for an Electronically Contralled Shock Absorber)

  • 박재우;이동락;백운경
    • 한국자동차공학회논문집
    • /
    • 제9권2호
    • /
    • pp.192-201
    • /
    • 2001
  • Analyzing internal structure, flow rate and dynamic behavior characteristics of electronically controlled shock absorber, damping performance limit is identified to comprise the two reciprocal characteristics of ride comfort and handling safety. Regardless of its lower performance than the active suspension control system, the semi-active suspension control system has been taking interest because of its absolutely higher performance than passive suspension system. Since the pervious studies have been concentrated mostly on analytic aspect and survey on the internal structure of the shock absorber remain insufficient, the main discourse of this paper is focused on analyzing the nonlinear shock absorber which varies the damping force of semi-active suspension system and the dynamic characteristics of the solenoid valve, a sort of pressure valve, and proposing the design factors of importance.

  • PDF

CFD-FEA ANALYSIS OF HYDRAULIC SHOCK ABSORBER VALVE BEHAVIOR

  • Shams, M.;Ebrahimi, R.;Raoufi, A.;Jafari, B.J.
    • International Journal of Automotive Technology
    • /
    • 제8권5호
    • /
    • pp.615-622
    • /
    • 2007
  • In this study, a Coupled Computational Fluid Dynamics(CFD) and Finite Element Analysis(FEA) method are used to predict and evaluate the performance of an automotive shock absorber. Averaged Navier-Stokes equations are solved by the SIMPLE method and the RNG $k-\varepsilon$ is used to model turbulence. CFD analysis is carried out for different intake valve deflections and piston velocities. The force exerted on the valve in each valve deflection is obtained. The valve deflection-force relationship is investigated by the FEA method. The force exerted on the valve in each piston velocity is obtained with a combination of CFD and FEA results. Numerical results are compared with the experimental data and have shown agreement. Dependence of valve deflection as a function of piston velocity is investigated. Effects of hydraulic oil temperature change on valve behavior are also studied.

충격 흡수기의 동적거동 해석 프로그램을 이용한 각 파라미터가 감쇠력에 미치는 영향 조사 (An Investigation into the Effect of Each Parameter on the Damping Forces Using Dynamic Behaviour Analysis P/G of S/A)

  • Park, J.W.;Shin, S.Y.;Lee, S.B.
    • 한국정밀공학회지
    • /
    • 제14권10호
    • /
    • pp.44-49
    • /
    • 1997
  • The damping force is determined by four valves and the components which consist of the shock absorber for vehicle. In this study it is investigated the individual effects of four valves and these components on damping forces using dynamic behaviour analysis program of the shock absorber. In addition, opening of main valves are researched during compression and tension cycle due to up- down reciprocation movement of piston. We are to strictly control the properties and tolerance of componenets having important effects on the damping force. Thus we are intended to produce shock absorber of better quality.

  • PDF

유공압 착륙장치 낙하시험 (Drop Test of an Oleo-pneumatic Landing Gear)

  • 김태욱;이상욱;신정우;이승규;김성찬;황인희;강신현
    • 한국항공우주학회지
    • /
    • 제38권11호
    • /
    • pp.1130-1135
    • /
    • 2010
  • 착륙장치는 완충장치를 이용하여 항공기 착륙 시의 충격을 흡수하는 역할을 한다. 다양한 종류의 완충장치가 존재하나, 완충효율 측면에서 가장 우수한 것은 유공압 방식이다. 착륙장치의 완충 성능은 반드시 낙하시험을 통해 입증하여야 하며, 이는 미 군사규격, 미연방 항공규정 등에서 공통적으로 요구하는 있는 사항이다. 이 논문에서는 낙하시험을 위한 설비 구성, 시험 절차 및 결과분석 방법을 실제 낙하시험 사례와 함께 제시한다.

동흡진기를 이용한 유압 브레이커의 진동 감쇠 가능성에 관한 연구 (Feasibility Study on the Vibration Reduction for Hydraulic Breaker by the Dynamic Vibration Absorber)

  • 강영기;장주섭
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권4호
    • /
    • pp.65-71
    • /
    • 2021
  • In this paper, the development of a vibration reduction device for hydraulic breakers was studied. Generally, a hydraulic breaker generates shock vibrations while working. When using vibration-proof rubber, shock vibrations are reduced, but without this, shock vibrations are repeatedly generated. Such repeated shock vibrations not only lower the fatigue strength of hydraulic breakers and excavators equipped with them but also increase the fatigue of the workers. This paper proposes the possibility of reducing shock vibration by using a dynamic vibration absorber.