• 제목/요약/키워드: Shock tube

검색결과 263건 처리시간 0.02초

터널내를 주행하는 열차의 공기역학적 해석(I)-1열차의 공기 역학- (Aerodynamic Analysis of a Train Running in a Tunnel(I)-Aerodynamics of One-Train-)

  • 김희동
    • 대한기계학회논문집B
    • /
    • 제21권8호
    • /
    • pp.963-972
    • /
    • 1997
  • As a high-speed train enters a tunnel, a compression wave is generated ahead of it due to the piston action of train. The compression waves propagate along the tunnel and reflect at the exit of tunnel. A complex wave phenomenon appears in the tunnel, because of the successive reflections of the pressure waves at the exit and entrance of tunnel. The pressure waves give rise to large pressure transients which impose the fluctuating loads on the running train. It is highly needed that the pressure transients should be predicted to design the train body and to improve the comfortableness of the passengers in the train. In the present study, the pressure transients were calculated numerically for a wide range of train speed and compared with the previous tunnel tests. The calculation results agreed with ones of the tunnel tests, and the mechanism of pressure transients was made clear.

터널내를 주행하는 열차의 공기역학적 해석(II)-2열차의 공기역학- (Aerodynamic Analysis of a Train Running in a Tunnel(II)-Aerodynamics of Two-Trains-)

  • 김희동
    • 대한기계학회논문집B
    • /
    • 제21권8호
    • /
    • pp.983-995
    • /
    • 1997
  • As a high-speed train enters a tunnel, a compression wave is generated ahead of it due to the piston action of train. The compression waves propagate along the tunnel and reflect backward at the exit of tunnel. A complex wave phenomenon appears in the tunnel, because of the successive reflections of the pressure waves at the exit and entrance of tunnel. The pressure waves can give rise to large pressure transients which impose the fluctuating loads on the running train. It is highly needed that the pressure transients should be predicted to design the train body and to improve the comfort for the passengers in the train. In the present study, the pressure transients and aerodynamic drag for two-trains running in a tunnel were calculated numerically for a wide range of train speed, and compared with the results of the previous tunnel tests and calculations for one train. The present calculation results agreed with ones of the tunnel tests, and the mechanism of pressure transients was made clear.

Rovibrational Energy Transitions and Coupled Chemical Reaction Modeling of H+H2 and He+H2 in DSMC

  • Kim, Jae Gang
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권3호
    • /
    • pp.347-359
    • /
    • 2015
  • A method of describing the rovibrational energy transitions and coupled chemical reactions in the direct simulation Monte Carlo (DSMC) calculations is constructed for $H(^2S)+H_2(X^1{\Sigma}_g)$ and $He(^1S)+H_2(X^1{\Sigma}_g)$. First, the state-specific total cross sections for each rovibrational states are proposed to describe the state-resolved elastic collisions. The state-resolved method is constructed to describe the rotational-vibrational-translational (RVT) energy transitions and coupled chemical reactions by these state-specific total cross sections and the rovibrational state-to-state transition cross sections of bound-bound and bound-free transitions. The RVT energy transitions and coupled chemical reactions are calculated by the state-resolved method in various heat bath conditions without relying on a macroscopic properties and phenomenological models of the DSMC. In nonequilibrium heat bath calculations, the state-resolved method are validated with those of the master equation calculations and the existing shock-tube experimental data. In bound-free transitions, the parameters of the existing chemical reaction models of the DSMC are proposed through the calibrations in the thermochemical nonequilibrium conditions. When the bound-free transition component of the state-resolved method is replaced by the existing chemical reaction models, the same agreement can be obtained except total collision energy model.

지능형 포탄의 저 감속 회수장치를 이용한 포탄의 감속방법 (Deceleration Method of Munition to used Soft Recovery System for Smart Munition)

  • 김명구;조종두;이승수;유일용;장쾌현
    • 한국소음진동공학회논문집
    • /
    • 제17권9호
    • /
    • pp.777-784
    • /
    • 2007
  • With the development of micro electronic circuits and optical equipment, the demand for developing smart munitions with the ability to autonomously search for and attack targets has increased. Since the electronic components within smart munitions are affected by high temperatures, pressure, and impulsive forces upon the combustion of gunpowder, stability and reliability need to be secured for them. Securing those stability and reliability requires soft recovery system which can decelerate smart munitions. A theoretical analysis of flow is performed for the secure recovery of bullets on the basis of Euler equation for compressible fluids. The inner pressure on a pressure tube, the speeds of bullets, and the deceleration of munitions are calculated theoretically. Theoretical results are compared with the data from the experiment with soft recovery system set up at the laboratory.

Improving Collision Energy Absorption In High Speed Train By Using Thin Walled Tubes

  • Salimi, Ehsan;Molatefi, Habib;Rezvani, MohammadAli;Shahsavari, Erfan
    • International Journal of Railway
    • /
    • 제6권3호
    • /
    • pp.85-89
    • /
    • 2013
  • The purpose of this paper is investigating the effect and influence rates of utilizing thin walled energy absorption tubes for improving crashworthiness parameter by increasing energy absorption of the body in high speed railcars. In order to find this, a proper profile of available tubes is chosen and added to the structure of selected high speed train in Iranian railway network (Pardis Trainset) and then examined in the scenario of impact with other moving rolling stock. Because of the specific features of LS-DYNA 3D software at collision analysis, the dynamic simulation has been performed in LS-DYNA 3D. The results of the analysis clearly indicate the improvement of train crashworthiness as the energy absorption of structure increases more than 30 percent in comparison with the original body. This strategy delays and reduces the shock to the structure. The verification of the simulation is by using ECE R66 standard.

Experimental study on seismic performance of concrete filled tubular square column-to-beam connections with combined cross diaphragm

  • Choi, Sung-Mo;Yun, Yeo-Sang;Kim, Jin-Ho
    • Steel and Composite Structures
    • /
    • 제6권4호
    • /
    • pp.303-317
    • /
    • 2006
  • The connection with combined cross diaphragm is developed for the connection of square CFT column and steel beam and proposed to be used for the frame with asymmetric span length. The structural characteristics of this connection lie in the penetration of the beam flange in the direction of major axis through the column for the smooth flow of stress. The purpose of this study is to analyze the dynamic behavior and stress flow of suggested connection and to evaluate the resistance to shock of connection. Four T-type CFT column-to-beam specimens; two with combined cross diaphragm and the others with interior and through diaphragms, the existing connection types, were made for cyclic load test guided by the load program of ANSI/AISC SSPEC 2002. The results show that the proposed connection is more efficient than existing ones in terms of strength, stress flow and energy absorption and satisfies the seismic performance required in the region of weak/moderate earthquakes.

Physics of Solar Flares

  • Magara, Tetsuya
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2010년도 한국우주과학회보 제19권1호
    • /
    • pp.25.1-25.1
    • /
    • 2010
  • This talk outlines the current understanding of solar flares, mainly focusing on magnetohydrodynamic (MHD) processes. A flare causes plasma heating, mass ejection, and particle acceleration that generates high-energy particles. The key physical processes related to a flare are: the emergence of magnetic field from the solar interior to the solar atmosphere (flux emergence), formation of current-concentrated areas (current sheets) in the corona, and magnetic reconnection proceeding in current sheets that causes shock heating, mass ejection, and particle acceleration. A flare starts with the dissipation of electric currents in the corona, followed by various dynamic processes which affect lower atmospheres such as the chromosphere and photosphere. In order to understand the physical mechanism for producing a flare, theoretical modeling has been developed, in which numerical simulation is a strong tool reproducing the time-dependent, nonlinear evolution of plasma before and after the onset of a flare. In this talk we review various models of a flare proposed so far, explaining key features of these models. We show observed properties of flares, and then discuss the processes of energy build-up, release, and transport, all of which are responsible for producing a flare. We come to a concluding view that flares are the manifestation of recovering and ejecting processes of a global magnetic flux tube in the solar atmosphere, which was disrupted via interaction with convective plasma while it was rising through the convection zone.

  • PDF

기관절개술 후 발생한 기관무명동맥루에서 연골막를 포함한 늑연골을 이용한 기관성형술 - 수술치험 1예 - (Tracheoplasty with using the Costal Cartilage, Including the Perichondrium, for Treating a Tracheoinnominate Artery Fistula - Surgical experience of one case -)

  • 조성호;계여곤;김종인;조성래
    • Journal of Chest Surgery
    • /
    • 제40권9호
    • /
    • pp.651-654
    • /
    • 2007
  • 기관무명동맥루는 매우 드물지만 높은 사망률을 보이는 질환으로, 장기간의 기관절개술이나 기관내 삽관후 합병증으로 발생한다. 대량 출혈로 인해 기도폐쇄 및 출혈성 쇼크로 생명의 위협이 초래되기 때문에 조기 진단과 즉각적인 치료가 반드시 필요하다. 후두 협착에 대한 수술을 위해 가능한 한 기관의 보존이 필요한 환자에 발생한 기관무명동맥루 환자에서 연골막을 포함한 늑연골을 이용한 기관성형술을 시행하였기에 보고하는 바이다.

Experiment Research of Autonomous Driving Valve for Pulse Detonation Rocket Engine

  • Matsuoka, Ken;Yamaguchi, Hiroyuki;Nemoto, Toyoshi;Yageta, Jun;Kasahara, Jiro;Yajima, Takashi;Kojima, Takayuki
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.419-426
    • /
    • 2008
  • As pulse detonation engine(PDE) does not need compression mechanisms such as compressors because self-sustained detonation waves are able to compress propellant gases by their incident shock waves, the PDE can have a simple straight-tube structure. In this study, we propose an autonomous driving valve system of the PDE, which fill premixed gases into the PDE tubes at high frequency with high mass flow rate. The proposed valve is composed of only three parts: a piston, a cylinder, and a spring. This valve system can produce intermittent flow at high mass flow rate, and also can keep stable reciprocal motion by using the propellant-gas enthalpy. When the cylinder content product is assumed to be constant, experimental results of the mass flow rate were approximately equal to the calculation model. We confirmed the autonomous driving valve performance by experiments, and concluded that this extremely simple valve with no electrical power and controller can be used as the PDE propellant supply system.

  • PDF

후천성 기관확장증 (Acquired Tracheal Dilatation)

  • 최종욱;김용환;김혜정;이승훈;최건
    • 대한기관식도과학회지
    • /
    • 제3권1호
    • /
    • pp.185-187
    • /
    • 1997
  • Acquired tracheal dilatation is a state of abnormal tracheal dilatation developing from various causes. Tracheomalacia and tracheal dilatation can develop in respiratory distress patients with prolonged endotracheal intubation with assisted positive-pressure ventilation due to positive airway pressure and high cuff pressure. The authors have recently experienced one case of respiratory failure, cardiac arrest, and whole body emphysema after tracheostomy and portex tube insertion were performed to patient with the endotracheal intubation with assisted positive-pressure ventilation for two weeks in the septic shock resulted from colon perforation, who developed tracheal dilatation. We summarize diagnostic and therapeutic strategies of acquired tracheal dilatation for the prevention of emergency status and the management for that patients.

  • PDF