• Title/Summary/Keyword: Shock tube

Search Result 263, Processing Time 0.026 seconds

Experimental Study Shock Waves in Superfluid Helium Induced by a Gasdynamic Shock Wave Impingement

  • Yang, Hyung-Suk;Nagai, Hiroki;Murakami, Masahide;Ueta, Yasuhiro
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.43-47
    • /
    • 2000
  • Two modes of shock waves, a compression shock wave and a thermal shock wave, propagating in He II have been investigated. The shock waves are at a time generated by the impingement of a gasdynamic shock wave onto a He II free surface in the newly developed superfluid shock tube facility. Superconductive temperature sensors, piezo-type pressure transducers and visualization photograph were used for the measurement of them and the phenomena induced by them were investigated in detail. It is found that the compression by a compression shock wave in He II causes temperature drop because He II has negative thermal expansion coefficient. the thermal shock wave is found to be of a single triangular waveform with a limited shock strength. The waveform is similar to that generated by stepwise strong heating from an electrical heater for relatively long heating time. In the experiments at the temperatures near the lambda temperature, no thermal shock wave is sometimes detected in shock compressed He II. It can be understood that shock compression makes He Ii convert to He I in which no thermal shock wave is excited.

  • PDF

Rovibrational Nonequilibrium of Nitrogen Behind a Strong Normal Shock Wave

  • Kim, Jae Gang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.28-37
    • /
    • 2017
  • Recent modeling of thermal nonequilibrium processes in simple molecules like hydrogen and nitrogen has indicated that rotational nonequilibrium becomes as important as vibrational nonequilibrium at high temperatures. In the present work, in order to analyze rovibrational nonequilibrium, the rotational mode is separated from the translational-rotational mode that is usually considered as an equilibrium mode in two- and multi-temperature models. Then, the translational, rotational, and electron-electronic-vibrational modes are considered separately in describing the thermochemical nonequilibrium of nitrogen behind a strong normal shock wave. The energy transfer for each energy mode is described by recently evaluated relaxation time parameters including the rotational-to-vibrational energy transfer. One-dimensional post-normal shock flow equations are constructed with these thermochemical models, and post-normal shock flow calculations are performed for the conditions of existing shock-tube experiments. In comparisons with the experimental measurements, it is shown that the present thermochemical model is able to describe the rotational and electron-electronic-vibrational relaxation processes of nitrogen behind a strong shock wave.

VARIABILITY OF BOW SHOCK LOCATION AT MARS

  • Yi, Yu;Kim, Eo-Jin;Kim, Yong-Ha;Kim, Jhoon
    • Journal of Astronomy and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.139-148
    • /
    • 1999
  • Bow shock formation, in case the supersonic solar wind flow is hindered by the atmosphere of Mars, is investigated. The atoms newly ionized from the extensive neutral atmosphere of Mars are loaded to the solar wind. By the conservation of momentum, the solar wind velocity is decreased. Then the supersonic flow velocity drops to the subsonic flow velocity in front of Mars at certain region, which is called the bow shock. The location of Mars subsolar bow shock is highly varying in the range of 1.3 to 2.5 Rm. Martian bow shock location is estimated by one-dimensional flux tube equations reduced from full three-dimensional MHD equations. The variability of Mars bow shock location effected by the solar wind conditions is studied. It is evident that the solar wind dynamic pressure change is able to make the Mars bow shock location variable.

  • PDF

Study on Analysis of Two-dimensional Compressible Waves by Lattice Boltzmann Method (격자볼츠만법을 이용한 2차원 압축성 충격파의 유동현상에 관한 수치계산)

  • Kang Ho-Keun;Ro Ki-Deok;Son Kang-Pil;Choi Min-Sun;Lee Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.557-560
    • /
    • 2002
  • In this study, simulation of weak shock waves are peformed by a two-dimensional thermal fluid or compressible fluid model of the lattice Boltzmann method. The shock wave represents an abrupt change in fluids properties, in which finite variations in pressure, internal energies, and density occur over the shock thickness. The characteristics of the proposed model with a simple distribution function is verified by calculation of the sound speeds, and the shock tube problem. The reflection of a weak shock wave by wedge propagating in a channel is performed. The results agree well with those by finite difference method or by experiment. In the simulation of unsteady shock wave diffraction around a sharp corner, we show a flow field of vortical structure near the comer.

  • PDF

Study on Damping Coefficient of Shock Absorber with Magnetic Effects (자기효과를 이용한 충격흡수장치의 감쇠계수에 관한 연구)

  • Yi, Mi-Seon;Bae, Jae-Sung;Hwang, Jae-Hyuk;Hwang, Do-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.9
    • /
    • pp.832-838
    • /
    • 2011
  • The shock absorber with magnetic effect is suggested for a lunar lander. The shock absorber consists of a metal tube, a piston rod, and several permanent magnets moved by a piston rod in the tube, and the shock energy can be dispersed and dissipated by magnetic effects such as the magnetic force existed between a metal and magnets and the eddy current effect generated by a relative motion with a conductor and magnets. Besides, the shock-absorbing effect similar to that of a coil spring can be obtained by arranging the magnets in line, which are facing the same polar each other. The device has a very simple structure and is usable in space due to the unnecessariness of any oil or gas. The shock absorber was designed and manufactured for experiments and its spring and damping characteristics were studied by the theoretical, analytical and experimental methods.

Compressible Two-Phase Flow Computations Using One-Dimensional ALE Godunov Method (ALE Godunov 법을 이용한 1 차원 압축성 이상유동 해석)

  • Shin, Sang-Mook;Kim, In-Chul;Kim, Yong-Jig
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.4 s.142
    • /
    • pp.330-340
    • /
    • 2005
  • Compressible two-phase flow is analyzed based on the arbitrary Lagrangian-Eulerian (ALE) formulation. For water, Tamman type stiffened equation of state is used. Numerical fluxes are calculated using the ALE two-phase Godunov scheme which assumes only that the speed of sound and pressure can be provided whenever density and internal energy are given. Effects of the approximations of a material interface speed are Investigated h method Is suggested to assign a rigid body boundary condition effectively To validate the developed code, several well-known problems are calculated and the results are compared with analytic or other numerical solutions including a single material Sod shock tube problem and a gas/water shock tube problem The code is applied to analyze the refraction and transmission of shock waves which are impacting on a water-gas interface from gas or water medium.

Experimental Study of Time-Dependent Evolution of Water Droplet Breakup in High-Speed Air Flows

  • Park, Gisu;Yeom, Geum-Su;Hong, Yun Ky;Moon, Kwan Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.38-47
    • /
    • 2017
  • This paper presents experimental data on water droplet breakup in high-speed air flows. Exact-time-dependent evolution of wave and droplet interaction as well as breakup processes were optically visualized using a shadowgraph technique. Droplet experiments were conducted in a shock tube. Five flow conditions were used with an incident shock wave Mach number from 1.40 to 2.19 with Weber number based on the droplet initial diameter from 2300 to 38000, respectively. This corresponds to post-shock flow speeds varying from subsonic to supersonic. The considered droplet diameters were 2.0 mm to 3.6 mm. Some interesting wave patterns in the near wake were found. The present data shows that with an increase in the Weber number the droplet acceleration coefficient decreases and the level of decrease was weaker for the case of higher Mach numbers. This state of affair is different to the existing data in literature. Possible reasons are discussed.

A Study on the Impulse Wave Discharged from the Exit of a Right-Angle Pipe Bend (곡관출구로부터 방출되는 펄스파에 관한 연구)

  • Lee, D.H.;Hur, S.C.;Kweon, Y.H.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.634-639
    • /
    • 2001
  • The current study addresses experimental and computational work of impulse wave discharged from the exit of two kinds of right-angle pipe bends, which are attached to the open end of a simple shock tube. The weak normal shock wave with its magnitude of Mach number from 1.02 to 1.20 is employed to obtain the impulse wave propagating outside the exit of the pipe bends. A Schlieren optical system visualizes the impulse wave discharged from the exit of the pipe bends at an instant. The experimental data of the magnitude of the impulse wave and its propagating directivity are analyzed to characterize the impulse waves discharged from the exit of the pipe bends and compared with those discharged from a straight pipe. Computational results well predict the experimented dynamic behaviors of the impulse wave. The results obtained show that a right-angle miter bend considerably reduces the magnitude of the impulse wave and its directivity toward to the pipe axis, compared with the straight pipe and right-angle smooth bend. It is believed that the right-angle miter bend pipe can playa role of a passive control against the impulse wave.

  • PDF

An Experimental Study on the Characteristics of the Impulsive Wave Discharged from the Open End of a Bend Pipe (곡관출구로부터 방출되는 펄스파의 특성에 관한 실험적 연구)

  • 이동훈;김희동;뢰척구준명
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.9
    • /
    • pp.406-413
    • /
    • 2001
  • The current study depicts and experimental work of the impulsive wave discharged from the exit of several kinds of right-angle bend pipes, which are attached to the open end of a simple shock tube. The weak normal shock wave with Mach number from 1.02 to 1.20 is employed to obtain the impulsive wave propagating outside the exit of the pipe bends. The experimental data of the magnitude of the impulsive wave and its propagation directivity are analyzed to characterize the impulsive waves discharged from the right-angle bend pipes and compared with those from a straight pipe. The impulsive waves are visualized by a Schlieren optical system. A computation work using the two-dimensional, unsteady, compressible Euler equation is also carried out to represent the experimented impulsive waves. The results obtained show that a right-angle miter bend considerably reduces the magnitude of the impulsive wave and its directivity toward to the pipe axis, compared with the straight pipe. It is believed that the right angle miter bend pipe can play a role of passive control agianst the impulsive wave.

  • PDF

Numerical Study on Shock-Vortex Interaction Behind a Flat Plate (평판 뒤 전단층에서의 충격파-와동 상호 간섭에 대한 수치적 연구)

  • Chang Se-Myong;Chang Keun-Shik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.23-28
    • /
    • 1999
  • In this paper we study numerically the shock-vortex interaction in the shear layer generated by moving shock waves above and below a flat plate. The faster normal shock is diffracted at the tip of the flat plate, producing a starting vortex. The slower normal shock below the flat plate arrives soon later to run across the vortex and make interaction. The two shocks are merged together and reflected back at the closed end of the shock tube to impinge on the shear layer developing multiple vortexlets. The computational simulation based on Euler and Navier-Stokes equations shows good prediction.

  • PDF