• Title/Summary/Keyword: Shock test

Search Result 980, Processing Time 0.023 seconds

Optimal Design of MR Shock Absorbers Using Finite Element Method (유한요소법을 이용한 MR 쇽 업소버의 최적설계)

  • Sung, Kum-Gil;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.375-380
    • /
    • 2007
  • This paper presents optimal design of controllable magnetorheological (MR) shock absorbers for passenger vehicle. In order to achieve this goal, two MR shock absorbers (one for front suspension; one for rear suspension) are designed using an optimization methodology based on design specifications for a commercial passenger vehicle. The optimization problem is to find optimal geometric dimensions of the magnetic circuits for the front and rear MR shock absorbers in order to improve the performance such as damping force as an objective function. The first order optimization method using commercial finite element method (FEM) software is adopted for the constrained optimization algorithm. After manufacturing the MR shock absorbers with optimally obtained design parameters, their field-dependent damping forces are experimentally evaluated and compared with those of conventional shock absorbers. In addition, vibration control performances of the full-vehicle installed with the proposed MR shock absorbers are evaluated under bump road condition and obstacle avoidance test.

  • PDF

Optimal Design of Magnetorheological Shock Absorbers for Passenger Vehicle via Finite Element Method (자기유변유체를 이용한 승용차량 쇽 업소버의 유한요소 최적설계)

  • Sung, Kum-Gil;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.169-176
    • /
    • 2008
  • This paper presents optimal design of controllable magnetorheological(MR) shock absorbers for passenger vehicle. In order to achieve this goal, two MR shock absorbers (one for front suspension; one for rear suspension) are designed using an optimization methodology based on design specifications for a commercial passenger vehicle. The optimization problem is to find optimal geometric dimensions of the magnetic circuits for the front and rear MR shock absorbers in order to improve the performance such as damping force as an objective function. The first order optimization method using commercial finite element method(FEM) software is adopted for the constrained optimization algorithm. After manufacturing the MR shock absorbers with optimally obtained design parameters, their field-dependent damping forces are experimentally evaluated and compared with those of conventional shock absorbers. In addition, vibration control performances of the full-vehicle installed with the proposed MR shock absorbers are evaluated under bump road condition and obstacle avoidance test.

Explosion Shock Measurement System of the Precursor Warhead for the Tandem Projectile (탠덤 비행체의 선구탄두 기폭 충격 측정 시스템 구현)

  • Choi, Donghyuk;An, Jiyeon;Kim, Yubeom;Son, Joongtak;Lee, Ukjun;Park, Hyunsoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.503-510
    • /
    • 2021
  • This paper presents a system that measures the acceleration of the shock caused by the explosion of the precursor warhead for the tandem projectile. The proposed system, which is implemented based on the MIL-STD-810G, Method 517.1, consists of a miniaturized shock measurement device, a cable, accelerometers, and a trigger circuit. The shock measurement device has a size of ¢102 × 171 mm and cable has a length of 3 m. The operational confirmation test is conducted by implementing the measurement system. The Analysis of shock data(accelerometer output data) is carried out using Shock Response Spectrum(SRS), pseudo velocity and plot of acceleration time transient. Through measurement analysis, one can predict the damage of electronics in projectile when precursor warhead is exploded.

SHOCK-ABSORBING BEHAVIOR OF TEMPORARY SOFT DENTURE LINERS (임시 연성 의치상 이장재의 충격 흡수에 관한 연구)

  • Chun, Yong-Suk;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.1
    • /
    • pp.151-167
    • /
    • 1996
  • Temporary soft liners can be used to prevent chronic soreness from dentures or to aid in its treatment are as adjuncts in tissue conditioning, for temporary obturators, and to stabilize baseplate or surgical stent. The purpose of this study was to evaluate the shock absorption properties of several temporary soft denture liners using a free drop test with an accelerometer. The materials tested inclued Coe-comfort, Softone, Tissue conditioner and Viscogel. The specimens were fabricated with the thickness of 1, 2, 3mm and were stored in distilled water at $37^{\circ}C$ for a day, 1, 2, and 3 weeks. Six samples were made with each material for each test condition and the shock-absorbing behavior was evaluated according to material, thickness and duration. The results were as following : 1. Softone of 3mm thickness stored for a day showed the most excellent shock absorbability. 2. The shock absorbing behavior of duration according to materials and thickness showed a day to be the highest and decreased in 1 week, 2 weeks and 3 weeks in that order(p<0.05). And there was no significant difference between durations in Tissue conditioner. 3. The shock absorbability of thickness according to materials and duration showed 3mm to be highest and decreased in the order of 2mm, 1mm(p<0.05). 4. In comparison of the shock absorbability of temporary soft denture liners according to thickness, there was statistically significant difference between Softone and Visocgel, Tissue conditioner, Coe-comfort / Viscogel and Tissue conditioner, Coe-comfort in 1,2mm thickness, and between Softone, Viscogel and Tissue conditioner, Coe-comfort in 3mm thickness (p<0.05).

  • PDF

Evaluation of Defects of Thermal Barrier Coatings by Thermal Shock Test Using Eddy Current Testing (열차폐 코팅층의 고온 열충격 시험후 ECT를 이용한 결함 평가)

  • Heo, Tae-Hoon;Cho, Youn-Ho;Lee, Joon-Hyun;Oh, Jeong-Seok;Lee, Koo-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.450-457
    • /
    • 2009
  • Periodical thermal shock can introduce defects in thermal barrier coating made by layers of CoNiCrAlY bond coating(BC) and $ZrO_2-8wt%Y_2O_3$ ceramic top coating(TC) on Inconel-738 substrate using plasma spraying. Thermal shock test is performed by severe condition that is to heat until $1000^{\circ}C$ and cool until $20^{\circ}C$. As the number of cycle is increased, the fatigue by thermal shock is also increased. After test, the micro-structures and mechanical characteristics of thermal barrier coating were investigated by SEM, XRD. The TGO layer of $Al_2O_3$ is formed between BC and TC by periodical thermal shock test, and its change in thickness is inspected by eddy current test(ECT). By ECT test, it is shown that TGO and micro-crack can be detected and it is possible to predict the life of thermal barrier coating.

Introduction and activities of ISO/TC 108/SC 6 (ISO/TC 108/SC 6 소개 및 최근 활동)

  • Kim, Nag In
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.545-547
    • /
    • 2014
  • The scope of ISO/TC 108/SC 6, revised in accordance with Doc. ISO/TC 108/SC 6 N 35, September 1997, is as follows: Standardization in the field of vibration and shock generating systems, for test purposes (including environment, seismic and dynamic testing, calibration and diagnostics) as well as auxiliary equipment and instrumentation normally associated with it. Vibration and shock generating systems as an object of standardization within ISO/TC 108/SC 6 are only those systems that are used during vibration/shock testing to determine properties of a specimen. Vibration and shock systems being used in such processes as transportation, milling, compacting, metal working, etc., as parts of vibration control systems or household appliances and in health services, are not covered by ISO/TC 108/SC 6.

  • PDF

Plume Interference Effect on a Missile Body and Its Control (미사일 동체에서 발생하는 Plume 간섭 효과와 제어)

  • Lim, Chae-Min;Lee, Young-Ki;Kim, Heuy-Dong;Szwaba, Ryszard
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1730-1735
    • /
    • 2003
  • The plume-induced shock wave is a complex phenomenon, consisting of plume-induced boundary layer separation, separated shear layer, multiple shock waves, and their interactions. The knowledge base of plume interference effect on powered missiles and flight vehicles is not yet adequate to get an overall insight of the flow physics. Computational studies are performed to better understand the flow physics of the plume-induced shock and separation particularly at high plume to exit pressure ratio. Test model configurations are a simplified missile model and two rounded and porous afterbodies to simulate moderately and highly underexpanded exhaust plumes at the transonic/supersonic speeds. The result shows that the rounded afterbody and porous wall attached at the missile base can alleviate the plume-induced shock wave phenomenon, and improve the control of the missile body.

  • PDF

Shock Response Analysis of Small Form Factor Optical Disk Drive using Finite Element Method (유한 요소법을 이용한 초소형 광디스크 드라이브의 충격해석)

  • 김시정;장영배;박노철;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.173-176
    • /
    • 2004
  • Nowadays, mobile devices are very common equipments such as mobile phone, PDA, etc. These equipments need information storage devices. Optical storage devices have more advantages than other storage devices, but it is not free from shock situation like dropping by user's mistakes. A complete model of a Small Form Factor Optical(SFFO) disk drive subject to shock loads is developed to investigate the response of the pickup/disk interface. With this model, we can simulate the drop test and consider the matters of shock simulation using commercial software(Ansys/LS-Dyna).

  • PDF

A Study of the Ionization Characteristics of Xenon Gas by Shock Compression (충격 압축에 의한 제논 가스의 이온화 특성 연구)

  • Lee, D.S.;Shin, J.R.;Choi, J.Y.;Choi, Y.S.;Kim, H.W.
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.493-502
    • /
    • 2010
  • In this paper, the ionization characteristics of noble gases are studied numerically behind strong shock waves. As a first step, the equilibrium ionization mechanism of noble gases is modeled in wide ranges of temperature and pressure. As a next step the equilibrium ionization model is coupled with fluid dynamic equations to analyze the local thermodynamic equilibrium(LTE) ionization process at high temperature and pressure conditions behind the strong imploding shock waves. The ionization characteristics of xenon gas is studied in a wide range of test conditions with thermal radiation effects. Hence, the results give optimal conditions of maximum ionization and radiation behind the imploding shock waves.

Design and Performance Test of Rubber Mounts for Shock-Isolation (고무를 이용한 완충요소의 설계 및 성능시험)

  • 유춘화;권형오;이신언
    • Journal of KSNVE
    • /
    • v.2 no.1
    • /
    • pp.41-47
    • /
    • 1992
  • In order to reduce the shock which may occur during shipping of a drumtype container, rubber mounts were designed using a commercial FEM package and manufactured, and then the performance was checked by static and dynamic test. According to the design specifications, the container system was tested by dropping. The experimental results are compared with the theoretical ones.

  • PDF