• Title/Summary/Keyword: Shock physics

Search Result 146, Processing Time 0.024 seconds

A Study of Kinetic Effect on Relativistic Shock using 3D PIC simulation

  • Choi, Eun-Jin;Min, Kyoung-Wook;Choi, Cheong-Rim;Nishikawa, Ken-Ichi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.67.1-67.1
    • /
    • 2012
  • Shocks are evolved when the relativistic jets in active galactic nuclei (AGNs), black hole binaries, supernova remnants (SNR) and gamma-ray bursts (GRBs) interact with the surrounding medium. The high energy particles are believed to be accelerated by the diffusive shock acceleration and the strong magnetic field is generated by Weibel instability in the shock. When ultrarelativistic electrons with strong magnetic field cool by the synchrotron emission, the radiation is observed in gamma-ray burst and the near-equipartitioned magnetic field in the external shock delays the afterglow emission. In this paper, we performed the 3D particle-in-cell (PIC) simulations to understand the characteristics of these relativistic shock and particle acceleration. Forward and reverse shocks are shaped while the unmagnetized injecting jet interacts with the unmagnetized ambient medium. Both upstream and downstream become thermalized and the particle accelerations are shown in each transition region of the shock structures.

  • PDF

Shock Waves in and around Protoclusters at Cosmic Noon in the Horizon Run 5 Simulation

  • Ji, Hannah;Hong, Sungwook E.;Koo, Hyeonmo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.66.1-66.1
    • /
    • 2019
  • We study cosmological shock waves in and around protoclusters at cosmic noon in the Horizon Run 5 Simulation (HR5), one of the world's largest hydrodynamic cosmological simulations. We select the local peaks of X-ray luminosity at z=2.5-3 in the HR5 lightcone volume as protocluster candidates. We find shock waves with Ms > 1.3 within the virial radii of the HR5 protocluster candidates by applying several shock-finding algorithms based on the Rankine-Hugoniot jump condition. We compare the properties of shock waves from different shock-finding algorithms.

  • PDF

Numerical Visualization of the Unsteady Shock Wave Flow Field in Micro Shock Tube

  • Arun, Kumar R.;Kim, Heuy-Dong
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.1
    • /
    • pp.40-46
    • /
    • 2012
  • Recently micro shock tube is extensively being used in many diverse fields of engineering applications but the detailed flow physics involved in it is hardly known due to high Knudsen number and strong compressibility effects. Unlike the macro shock tube, the surface area to volume ratio for a micro shock tube is very large. This unique effect brings many complexities into the flow physics that makes the micro shock tube different compared with the macro shock tube. In micro shock tube, the inter- molecular forces of working gas can play an important role in specifying the flow characteristics of the unsteady shock wave flow which is essentially generated in all kinds of shock tubes. In the present study, a CFD method was used to predict and visualize the unsteady shock wave flows using the unsteady compressible Navier-Stokes equations, furnished with the no-slip and slip wall boundary conditions. Maxwell's slip equations were used to mathematically model the shock movement at high Knudsen number. The present CFD results show that the propagation speed of the shock wave is directly proportional to the initial pressure and diameter of micro shock tube.

Room-temperature tensile strength and thermal shock behavior of spark plasma sintered W-K-TiC alloys

  • Shi, Ke;Huang, Bo;He, Bo;Xiao, Ye;Yang, Xiaoliang;Lian, Youyun;Liu, Xiang;Tang, Jun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.190-197
    • /
    • 2019
  • W-K-TiC alloys with different titanium carbide concentrations (0.05, 0.1, 0.25, 0.5, 1, 2) wt.% were fabricated through Mechanical Alloying and Spark Plasma Sintering. The effects of the addition of nano-scaled TiC particles on the relative density, Vickers micro-hardness, microstructure, crystal information, thermal shock resistance, and tensile strength were investigated. It is revealed that the doped TiC nano-particles located at the grain boundaries. The relative density and Vickers micro-hardness of W-K-TiC alloys was enhanced with TiC addition and the highest Vickers micro-hardness is 731.55. As the TiC addition increased from 0.05 to 2 wt%, the room-temperature tensile strength raised from 141 to 353 MPa. The grain size of the W-K-TiC alloys decreased sharply from $2.56{\mu}m$ to 330 nm with the enhanced TiC doping. The resistance to thermal shock damage of W-K-TiC alloys was improved slightly with the increased TiC addition.

Electron Firehose Instabilities in High-β Intracluster Medium

  • Kim, Sunjung;Ha, Ji-Hoon;Ryu, Dongsu;Kang, Hyesung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.55.2-55.2
    • /
    • 2019
  • The firehose instability is driven by a pressure anisotropy in a magnetized plasma when the temperature along the magnetic field is higher than the perpendicular temperature. Such condition occurs commonly in astrophysical and space environments, for instance, when there are beams aligned with the background magnetic field. Recently, it was argued that, in weak quasi-perpendicular shocks in the high-β intracluster medium (ICM), shock-reflected electrons propagating upstream cause the temperature anisotropy. This electron temperature anisotropy can trigger the electron firehose instability (EFI), which excites oblique waves in the shock foot. Scattering of electrons by these waves enables multiple cycles of shock drift acceleration (SDA) in the preshock region, leading to the electron injection to diffusive shock acceleration (DSA). In the study, the kinetic properties of the EFI are examined by the linear stability analysis based on the kinetic Vlasov-Maxwell theory and then further investigated by 2D Particle-in-Cell (PIC) simulations, especially focusing on those in high-β (β~100) plasmas. We then discuss the basic properties of the firehose instability, and the implication of our work on electron acceleration in ICM shock.

  • PDF

Plume Interference Effect on a Missile Body and Its Control (미사일 동체에서 발생하는 Plume 간섭 효과와 제어)

  • Lim, Chae-Min;Lee, Young-Ki;Kim, Heuy-Dong;Szwaba, Ryszard
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1730-1735
    • /
    • 2003
  • The plume-induced shock wave is a complex phenomenon, consisting of plume-induced boundary layer separation, separated shear layer, multiple shock waves, and their interactions. The knowledge base of plume interference effect on powered missiles and flight vehicles is not yet adequate to get an overall insight of the flow physics. Computational studies are performed to better understand the flow physics of the plume-induced shock and separation particularly at high plume to exit pressure ratio. Test model configurations are a simplified missile model and two rounded and porous afterbodies to simulate moderately and highly underexpanded exhaust plumes at the transonic/supersonic speeds. The result shows that the rounded afterbody and porous wall attached at the missile base can alleviate the plume-induced shock wave phenomenon, and improve the control of the missile body.

  • PDF

Electron Preacceleration at Weak Quasi- Perpendicular ICM Shocks: Effects of Shock Surface Rippling

  • Ha, Ji-Hoon;Kim, Sunjung;Ryu, Dongsu;Kang, Hyesung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.55.2-55.2
    • /
    • 2020
  • Radio relics in the outskirts of galaxy clusters are interpreted as synchrotron radiation due to the relativistic electrons produced via diffusive shock acceleration (DSA) in shocks with low sonic Mach numbers, Ms ≤ 3 in high beta ICM plasma. Electron injection into the DSA process at such weak shocks is one of the key elements, which has yet to be fully understood. In this study, we explore the nature of kinetic microinstabilities excited in weak quasi-perpendicular shocks through 2D particle-in-cell simulations. We find Alfven-ion cyclotron (AIC), whistler, and mirror instabilities can be triggered by ion and electron temperature anisotropy in the immediate downstream of supercritical shocks with Ms > Mcrit ~ 2.3. In particular, AIC instability causes rippling of the shock surface, which in turn generates plasma waves on multi-scales and faciliates the electron preacceleration. Our results may contribute to understanding the origins of radio relics.

  • PDF

Vortex Ring, Shock-Vortex Interaction, and Morphological Transformation Behind a Finite Cone

  • Jang, Seo-Myeong;Jang, Geon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.11
    • /
    • pp.1599-1604
    • /
    • 2001
  • Axisymmetric compressible flow field induced by shock diffraction from a finite cone is investigated with experimental and computational methods. Double-exposure holographic interferograms show ima ges of the density field integrated along the light path. Using the sight-integrated density based on the Able transformation, the axisymmetric computational results are compared qualitatively with the experiment. In the present paper, we observed some distinguishing flow physics: the fault structure of vortex ring, the shock-vortex interaction, and the morphological transformation of shock waves.

  • PDF

Time-Dependent Characteristics of the Nonequilibrium Condensation in Subsonic Flows

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Toshiaki Setoguchi;Kim, Heuy-Dong
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1511-1521
    • /
    • 2002
  • High-speed moist air or steam flow has long been of important subject in engineering and industrial applications. Of many complicated gas dynamics problems involved in moist air flows, the most challenging task is to understand the nonequilibrium condensation phenomenon when the moist air rapidly expands through a flow device. Many theoretical and experimental studies using supersonic wind tunnels have devoted to the understanding of the nonequilibrium condensation flow physics so far. However, the nonequilibrium condensation can be also generated in the subsonic flows induced by the unsteady expansion waves in shock tube. The major flow physics of the nonequilibrium condensation in this application may be different from those obtained in the supersonic wind tunnels. In the current study, the nonequilibrium condensation phenomenon caused by the unsteady expansion waves in a shock tube is analyzed by using the two-dimensional, unsteady, Navier-Stokes equations, which are fully coupled with a droplet growth equation. The third-order TVD MUSCL scheme is applied to solve the governing equation systems. The computational results are compared with the previous experimental data. The time-dependent behavior of nonequilibrium condensation of moist air in shock tube is investigated in details. The results show that the major characteristics of the nonequilibrium condensation phenomenon in shock tube are very different from those in the supersonic wind tunnels.