• Title/Summary/Keyword: Shock Wave/Boundary Layer Interaction

Search Result 66, Processing Time 0.029 seconds

A New Experiment on Interaction of Normal Shock Wave and Turbulent Boundary Layer in a Supersonic Diffuser (초음속디퓨져에서 발생하는 수직충격파의 난류경계층의 간섭에 관한 실험)

  • 김희동;홍종우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2283-2296
    • /
    • 1995
  • Experiments of normal shock wave/turbulent boundary layer interaction were conducted in a supersonic diffuser. The flow Mach number just upstream of the normal shock wave was in the range of 1.10 to 1.70 and Reynolds number based upon the turbulent boundary layer thickness was varied in the range of 2.2*10$^{[-994]}$ -4.4*10$^{[-994]}$ . The wall pressures in streamwise and spanwise directions were measured for two test cases, in which the turbulent boundary layer thickness incoming into the supersonic diffuser was changed. The results show that the interactions of normal shock wave with turbulent boundary layer in the supersonic diffuser can be divided into three patterns, i.e., transonic interaction, weak interaction and strong interaction, depending on Mach number. The weak interactions generate the post-shock expansion which its strength is strong as the Mach number increases and the strong interactions form the pseudo-shock waves. From the spanwise measurements of wall pressure, it is known that if the flow Mach number is low, the interacting flow fields essentially appear two-dimensional, but they have an apparent 3-dimensionality for the higher Mach numbers.

Numerical Study of Shock Wave-Boundary Layer Interaction in a Curved Flow Path (굽어진 유로 내부의 충격파-경계층 상호작용 수치연구)

  • Kim, Jae-Eun;Jeong, Seung-Min;Choi, Jeong-Yeol;Hwang, Yoojun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.6
    • /
    • pp.36-44
    • /
    • 2021
  • Numerical analysis was performed on the shock wave-boundary layer interaction generated in the internal flow path of the curved interstage of the scramjet engine flight test vehicle. For numerical analysis, the turbulence model k-ω SST was used in the compressibility Raynolds Averaged Navier Stokes(RANS) equation. Representatively, the separation bubbles on the upper wall of the nozzle, the interaction between the concave shock wave and the boundary layer, and the shock wave-shock wave interaction at the edge were captured. The analysis result visualizes the shock wave-boundary layer interaction of the curved internal flow path to enhance understanding and suggest design considerations.

Reduction of Normal Shock-Wave Oscillations by Turbulent Boundary Layer Flow Suction (경계층 유동의 흡입에 의한 수직충격파 진동저감)

  • Kim, Heuy Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1229-1237
    • /
    • 1998
  • Experiments of shock-wave/turbulent boundary layer interaction were conducted by using a supersonic wind tunnel. Nominal Mach number was varied in the range of 1.6 to 3.0 by means of different nozzles. The objective of the present study is to investigate the effects of boundary layer suction on normal shock-wave oscillations caused by shock wave/boundary layer interaction in a straight duct. Two-dimensional slits were installed on the top and bottom walls of the duct to bleed turbulent boundary layer flows. The bleed flows were measured by an orifice. The ratio of the bleed mass flow to main mass flow was controlled below the range of 11 per cent. Time-mean and fluctuating wall pressures were measured, and Schlieren optical observations were made to investigate time-mean flow field. Time variations in the shock wave displacement were obtained by a high-speed camera system. The results show that boundary layer suction by slits considerably reduce shock-wave oscillations. For the design Mach number of 2.3, the maximum amplitude of the oscillating shock-wave reduces by about 75% compared with the case of no slit for boundary layer suction.

Effect of flow bleed on shock wave/boundary layer interaction (유동의 흡입이 충격파/경계층의 간섭현상에 미치는 영향)

  • Kim, Heuy-Dong;Matsus, Kazuyasu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1273-1283
    • /
    • 1997
  • Experiments of shock wave/turbulent boundary layer interaction were conducted by using a supersonic wind tunnel. Nominal Mach number was varied in the range of 1.6 to 3.0 by means of different nozzles. The objective of the present study is to investigate the effects of boundary layer flow bleed on the interaction flow field in a straight tube. Two-dimensional slits were installed on the tube walls to bleed the turbulent boundary layer flows. The bleed flows were measured by an orifice. The ratio of the bleed mass flow to main mass flow was controlled within the range of 11 per cent. The wall pressures were measured by the flush mounted transducers and Schlieren optical observations were made for almost all of the experiments. The results show that the boundary layer flow bleed reduces the multiple shock waves to a strong normal shock wave. For the design Mach number of 1.6, it was found that the normal shock wave at the position of the silt was resulted from the main flow choking due to the suction of the boundary layer flow.

EFFECTS OF TURBULENCE MODEL AND EDDY VISCOSITY IN SHOCK-WAVE / BOUNDARY LAYER INTERACTION (충격파 경계층 상호작용에서 난류모델 및 난류점성의 효과)

  • Jeon, Sang Eon;Park, Soo Hyung;Byun, Yung Hwan
    • Journal of computational fluids engineering
    • /
    • v.18 no.2
    • /
    • pp.56-65
    • /
    • 2013
  • Two compression ramp problems and an impinging shock problem are computed to investigate influence of turbulence models and eddy viscosity on the shock-wave / boundary layer interaction. A Navier-Stokes boundary layer generation code was applied to the generation of inflow boundary conditions. Computational results are validated well with the experimental data and effects of turbulence models are investigated. It is shown that the behavior of turbulence (eddy) viscosity directly affects both the extent of the separation and shock-wave positions over the separation.

Interaction Between an Unstabilized Turbulent Boundary Layer and an Incident Oblique Shock Wave (不安定化된 亂流境界層 과 斜角入射衝擊波 와의 相互作용)

  • 이덕봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.2
    • /
    • pp.158-173
    • /
    • 1985
  • An experimental investigation has been made to study the interaction between and incident oblique shock wave and an unstabilized turbulent boundary layer on a solid surface downstream of a porous surface with air injection through the porous surface. The boundary layer upstream of the interaction is unstabilized by the injection and provokes a shock wave which eventually interacts with the unstabilized boundary layer after reflecting from the upper wall of the test section. Three cases having diferent upstream Mach numbers and different shock strengthes are studied. According to the level of the unstabilization, two cases are of attached boundary layers and the other one is of a separated boundary layer. The result shows that the reflected wavey system is composed of the compression wave, expansion wave fan, and recompression wave like the ordinary interaction while the separated boundary layer strengthens the reflected expansion waves. The interactions of the attached boundary layers show a similar tendency of the upstream wall pressure distribution as that of the ordinary interacton but the pressure rise rather decays in the downstream region. In case of the separated boundary layer, the wall pressure continues to rise in the downstream as opposed ot the former cases. This indicates that the interaction region spreads out widely adn the viscous effect of the separated boundary layer smoothens the abrupt pressure increase due to the shock inpingement.

Numerical Analysis of Detonation Wave Propagation in SCRam-Accelerator (초음속 연소 탄체 가속기 내의 폭굉파 진행에 관한 수치해석)

  • Choi, Jeong-Yeol;Jeung, In-Seuck;Lee, Soo-Gab
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.1
    • /
    • pp.83-91
    • /
    • 1996
  • A numerical study is carried out to examine the ignition and propagation process of detonation wave in SCRam-accelerator operating in superdetonative mode. The time accurate solution of Reynolds averaged Navier-Stokes equations for chemically reacting flow is obtained by using the fully implicit numerical method and the higher order upwind scheme. As a result, it is clarified that the ignition process has its origin to the hot temperature region caused by shock-boundary layer interaction at the shoulder of projectile. After the ignition, the oblique detonation wave is generated and propagates toward the inlet while constructing complex shock-shock interaction and shock-boundary layer interaction. Finally, a standing oblique detonation wave is formed at the conical ramp.

  • PDF

A Numerical Study of Shock Wave/Boundary Layer Interaction in a Supersonic Compressor Cascade

  • Song, Dong-Joo;Hwang, Hyun-Chul;Kim, Young-In
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.366-373
    • /
    • 2001
  • A numerical analysis of shock wave/boundary layer interaction in transonic/supersonic axial flow compressor cascade has been performed by using a characteristics upwind Navier-Stokes method with various turbulence models. Two equation turbulence models were applied to transonic/supersonic flows over a NACA 0012 airfoil. The results are superion to those from an algebraic turbulence model. High order TVD schemes predicted shock wave/boundary layer interactions reasonably well. However, the prediction of SWBLI depends more on turbulence models than high order schemes. In a supersonic axial flow cascade at M=1.59 and exit/inlet static pressure ratio of 2.21, k-$\omega$ and Shear Stress Transport (SST) models were numerically stables. However, the k-$\omega$ model predicted thicker shock waves in the flow passage. Losses due to shock/shock and shock/boundary layer interactions in transonic/supersonic compressor flowfields can be higher losses than viscous losses due to flow separation and viscous dissipation.

  • PDF

A passive control on shock oscillations in a supersonic diffuser (초음속 디퓨져에서 발생하는 충격파 진도의 피동제어)

  • Kim, Heuy-Dong;Matsuo, Kazuyasu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.3
    • /
    • pp.1083-1095
    • /
    • 1996
  • Shock wave/boundary layer interaction frequently causes the shock wave to oscillate violently and thus the global flow field to unstabilize. In order to stabilize the shock wave system in the diffuser of a supersonic wind tunnel, the present study attempted to control the shock oscillations by using a passive control. A porous wall with the porosity of 19.6% was mounted on a shallow cavity. Experiment was made by means of schlieren optical observation and wall pressure measurements. The flow Mach number just upstream the shock system and Reynolds number based on the turbulent boundary layer thickness were 2.1 and 1.8 * 10$\^$6/, respectively. The results show that the present passive control method on the shock wave/boundary layer interaction in the supersonic diffuser can significantly suppress the oscillations of shock system, especially when the shock system locates at the porous wall.

Computations on Passive Control of Normal Shock-Wave/Turbulent Boundary-Layer Interactions (수직충격파와 난류경계층의 간섭유동의 피동제어에 관한 수치 해석)

  • 구병수;김희동
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.3
    • /
    • pp.25-32
    • /
    • 2001
  • A passive control method of the interaction between a weak normal shock-wave and a turbulent boundary-layer was simulated using two-dimensional Navier-Stokes computations. The inflow Mach number just upstream of the normal shock wave was 1.33. A porous plate wall having a cavity underneath was used to control the shock-wave/turbulent boundary-layer interaction. The flows through the porous holes and inside the cavity were investigated to get a better understanding of the flow physics involved in this kind of passive control method. The present computations were validated by some recent wind tunnel tests. The results showed that downstream of the rear leg of the $\lambda$-shock wave the main stream inflows into the cavity, but upstream of the rear leg of the $\lambda$-shock wave the flow proceeds from the cavity toward to the main stream. The flow through the porous holes did not choke fur the present shock/boundary layer interaction.

  • PDF