• Title/Summary/Keyword: Shock Tunnel

Search Result 157, Processing Time 0.028 seconds

Thrust Measurement in a Impulse Facility (충격파 시험장치를 이용한 추력 측정)

  • Jin, Sangwook;Hwang, Kiyoung;Park, Dongchang;Min, Seongki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.310-319
    • /
    • 2017
  • This paper introduces the method how to measure the thrust in impulse facility. In a Facility having such a short duration time of steady flow, there's no time to reach a steady state of the forces acting on model so that the test model vibrates until the end of the flow. The forces exerted on an engine exist with vibration so that the usual force balance can not be used. SWFB(Stress Wave Force Balance) technique is utilized in a shock tunnel to get the thrust. As an example, a model force balance has been calculated its strain against impulse force by using FEM(Finite Element Method). A transfer function between the impulse force and strain has been obtained by the way of de-convolution.

  • PDF

Comparison Research between Lighting Based on luminance and Illuminance through Measuring Tunnel Lighting (터널조명 측정을 통한 조도와 휘도기반의 조명 비교 연구)

  • Lee, Mi-Ae;Han, Seung-Hun;Kim, Yeon-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.11
    • /
    • pp.14-19
    • /
    • 2013
  • Tunnel lighting design and operation are both regulated based on luminance in and out of Korea these days. However, domestic tunnel lighting is operated by internal lighting depending on external brightness by using an illuminometer applying the conversion factor on luminance. The purpose of tunnel lighting is to alleviate the visual shock occurring from the rapid change from external brightness to internal brightness when entering a tunnel. However, when looking at the tunnels operated based on an illuminometer, it is not a system where the driver can measure the brightness within his or her viewing angle when entering the tunnel. It is general to install and operate the illuminometer on the roof of an administrative office near the tunnel; however, this method is not structured to connect with the internal lighting by checking the brightness of the viewing scope of the driver, thus is not structured to properly apply the viewing conditions of the driver. Rather, it should be in a method for extracting the luminance value within the viewing scope of the driver pursuant to tunnel lighting standards and in connection with internal lighting. This research seeks to find the difference between operations based on luminance and operations based on intensity of Illuminance in road tunnels through field measuring, and to suggest the necessity of operating based on luminance with the resulting value.

Dynamic Behavior of Submerged Floating Tunnel by Underwater Explosion (수중폭발에 의한 해중터널의 동적거동)

  • Hong, Kwan-Young;Lee, Gye-Hee;Lee, Seong-Lo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.5
    • /
    • pp.215-226
    • /
    • 2018
  • In this paper, to estimate the dynamic behavior of a submerged floating tunnel(SFT) by underwater explosion(UE), the SFT is modeled and analyzed by the explicit structural analysis package LS-DYNA. The section of SFT near to explosion point is modeled to shell and solid elements using elasto-plasticity material model for concrete tubular section and steel lining. And the other parts of the SFT are modeled to elastic beam elements. Also, mooring lines are modeled as tension-only cable elements. Total mass of SFT is including an added mass by hydrodynamic effect. The buoyancy on the SFT is considered in its initial condition using a dynamic relaxation method. The accuracy and the feasibility of the analysis model aree verified by the results of series of free field analysis for UE. And buoyancy ratio(B/W) of SFT, the distance between SFT and an explosion point and the arrangement of mooring line aree considered as main parameters of the explosion analysis. As results of the explosion analysis, the dynamic responses such as the dent deformation by the shock pressure are responded less as more distance between SFT and an explosion point. However, the mooring angle of the diagonal mooring system can not affect the responses such as the horizontal displacement of SFT by the shock pressure.

New Treatment of High-Pressure Exhaust Gas Flows Using Shock-Wave Confinement (충격파 감금법을 이용한 배기가스 유동의 새로운 처리법에 관한 연구)

  • ;;;K.Matsuo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.1
    • /
    • pp.78-87
    • /
    • 1998
  • In many industrial practices it is an important problem to discharge a high-pressure exhaust gas to the atmosphere without generating a loud noise and much vibration. This may be achieved by confining a shock system inside the exhaust duct with a double orifice. The objective of the current work is to develop a new treatment method for the high-pressure exhaust gases. A theoretical analysis was applied to one-dimensional, steady. viscous, compressible model flowfield, and an experiment was performed using a shock tunnel facility. The results showed that the total pressure drop increases with a decrease of the opening area of the upstream orifice, and the shock confinement to the duct is possible by decreasing the opening area of the downstream orifice.

  • PDF

Efficacy of extracorporeal shock wave therapy for pillar pain after open carpal tunnel release: a double-blind, randomized, sham-controlled study

  • Turgut, Mehmet Cenk;Saglam, Gonca;Toy, Serdar
    • The Korean Journal of Pain
    • /
    • v.34 no.3
    • /
    • pp.315-321
    • /
    • 2021
  • Background: Pillar pain may develop after carpal tunnel release surgery (CTRS). This prospective double-blinded randomized trial investigated the effectiveness of extracorporeal shock wave therapy (ESWT) in pillar pain relief and hand function improvement. Methods: The sample consisted of 60 patients with post-CTRS pillar pain, randomized into two groups. The ESWT group (experimental) received three sessions of ESWT, while the control group received three sessions of sham ESWT, one session per week. Participants were evaluated before treatment, and three weeks, three months, and six months after treatment. The pain was assessed using the visual analogue scale (VAS). Hand functions were assessed using the Michigan hand outcomes questionnaire (MHQ). Results: The ESWT group showed significant improvement in VAS and MHQ scores after treatment at all time points compared to the control group (P < 0.001). Before treatment, the ESWT and control groups had a VAS score of 6.8 ± 1.3 and 6.7 ± 1.0, respectively. Three weeks after treatment, they had a VAS score of 2.8 ± 1.1 and 6.1 ± 1.0, respectively. Six months after treatment, the VAS score was reduced to 1.9 ± 0.9 and 5.1 ± 1.0, respectively. The ESWT group had a MHQ score of 54.4 ± 7.7 before treatment and 73.3 ± 6.8 six months after. The control group had a MHQ score of 54.2 ± 7.1 before treatment and 57.8 ± 4.4 six months after. Conclusions: ESWT is an effective and a safe non-invasive treatment option for pain management and hand functionality in pillar pain.

Numerical study on the interaction between unsteady compression and unsteady expansion wave (비정상 압축파와 비정상 팽창파의 간섭에 관한 수치해석적 연구)

  • Kim, Hui-Dong;Setoguchi, Toshiaki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.11
    • /
    • pp.1413-1421
    • /
    • 1997
  • A new control method to alleviate the impulsive noise at the exit of high-speed railway tunnel was applied to the compression wave at the entrance of the tunnel. This method uses the interaction phenomenon of unsteady expansion wave and unsteady compression wave. Unsteady expansion wave was assumed to be made instantaneously by the simple theory of shock tube. Total Variation Diminishing method was employed to solve the axisymmetric unsteady compressible flow field with a specified compression wave. Numerical results show that the maximum pressure gradient of the propagating compression wave decreases with increase of the wave length of the unsteady expansion wave. It is found that the impulsive noise reduction can be obtained when the unsteady expansion wave with a large wave length is emitted just before the train enters the tunnel. The present results give the possibility to reduce the impulsive noise at the exit of tunnel.

Study on failure behaviors of mixed-mode cracks under static and dynamic loads

  • Zhou, Lei;Chen, Jianxing;Zhou, Changlin;Zhu, Zheming;Dong, Yuqing;Wang, Hanbing
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.567-582
    • /
    • 2022
  • In the present study, a series of physical experiments and numerical simulations were conducted to investigate the effects of mode I and mixed-mode I/II cracks on the fracture modes and stability of roadway tunnel models. The experiments and simulations incorporated different inclination angle flaws under both static and dynamic loads. The quasi-static and dynamic testing were conducted by using an electro-hydraulic servo control device and drop weight impact system (DWIS), and the failure process was simulated by using rock failure process analysis (RFPA) and AUTODYN software. The stress intensity factor was also calculated to evaluate the stability of the flawed roadway tunnel models by using ABAQUS software. According to comparisons between the test and numerical results, it is observed that for flawed roadways with a single radical crack and inclination angle of 45°, the static and dynamic stability are the lowest relative to other angles of fractured rock masses. For mixed-mode I/II cracks in flawed roadway tunnel models under dynamic loading, a wing crack is produced and the pre-existing cracks increase the stress concentration factor in the right part of the specimen, but this factor will not be larger than the maximum principal stress region in the roadway tunnel models. Additionally, damage to the sidewalls will be involved in the flawed roadway tunnel models under static loads.

Numerical Investigation on Cavity-Enhanced-Supersonic Combustion Engine of Upstream Fuel Injection in Cavity (공동내부 연료분사방식 초음속 연소기의 수치해석 연구)

  • Jeong, Eun-Ju;Jeung, In-Seuck
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.35-39
    • /
    • 2003
  • A numerical study is carried out to investigate combustion phenomena in a model SCRamjet engine, which has been experimentally studied at the Australian National University using a T3 free-piston shock tunnel. The Mach number is 3.8, the static pressure 110kPa and the static temperature 1100K in the main air flow. The fuel is hydrogen, which is injected in the cavity. Equivalence ratio is set to either 0.25 or 0.5 to access its effect on the fuel-air mixing combustion phenomena. The results show that the cavity generates several recirculation zones, which increase the fuel-air mixing. Self ignition occurs near the point of fuel injection. The flame is anchored by the cavity and generates the precombustion shock on the step. For a high equivalence ratio, the recirculation zones are bigger and the flame is present throughout the combustor.

  • PDF

An experimental study on the flow characteristics of a supersonic turbine cascade as the leading edge shape and the nozzle-cascade gap (초음속 터빈 익렬 앞전 형상 및 노즐-익렬 간격에 따른 유동 특성에 대한 실험적 연구)

  • Cho Jong-Jae;Kim Kui-Soon;Kim Jin-Han;Jeong Eun-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.349-354
    • /
    • 2005
  • In this paper, a small supersonic wind tunnel is designed and built to study the flow characteristics of a supersonic impulse turbine cascade. The flow is visualized by means of a single pass Schlieren system. The supersonic cascade with 2-dimensional supersonic nozzle was tested for various blade leading edge shapes and gaps between the nozzle and cascade. Highly complicated flow patterns including shocks, nozzle-cascade interaction and shock boundary layer interactions are observed.

  • PDF

An experimental study on the expansion loss of a supersonic turbine with the cascade position (익렬 위치에 따른 초음속 터빈의 확산 손실에 대한 실험적 연구)

  • Cho, Jong-Jae;Kim, Kui-Soon;Jeong, Eun-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.387-392
    • /
    • 2006
  • A small supersonic wind tunnel was designed and built to study the flow characteristics of a supersonic impulse turbine cascade. Experiments are performed to find flow characteristics of supersonic turbine with the cascade positions and to find factor of expansion loss. The supersonic cascade with a 2-dimensional supersonic nozzle was tested with the cascade positions. Firstly, the flow was visualized by Z-type Schlieren system. Finally, highly complicated flow patterns including shocks, nozzle-cascade interaction and shock boundary layer interactions, flow characteristics of the supersonic turbine were observed.

  • PDF