• 제목/요약/키워드: Shock Excitation

검색결과 46건 처리시간 0.027초

FIR Observations and Simple LVG Modeling Results of L1448-MM

  • 이진희;이정은;이석호
    • 천문학회보
    • /
    • 제37권1호
    • /
    • pp.82.2-82.2
    • /
    • 2012
  • We present Herschel-PACS observations of L1448-MM, a Class 0 protostar with a prominent outflow, part of the DIGIT Key Program (PI: N. Evans). We detect numerous emission lines including CO and $H_2O$ rotational transitions, OH transitions, and [OI] forbidden transitions at wavelengths from 55 to 210 ${\mu}m$. The $H_2O$, [OI], mid-J CO (J < 23), and OH emission distributes along the outflow direction although high-J CO and other OH emission peaks at the central spatial pixel. According to our simple excitation analysis, CO seems to have two temperature components of warm and hot, which might be attributed to the PDR and shock, respectively. After exploring a wide range of physical conditions with a non-LTE LVG code, RADEX, we found that either shock alone or the combination of PDR and shock can explain the observations. The relative fraction of observed line luminosities suggest that L1448-MM is shielded from the UV radiation because $H_2O$ and CO are the dominant coolants rather than OH and [OI]. In addition, our observed fluxes match better with C-shock models rather than J-shocks. The non-LTE LVG model supports that the IR pumping process is important for OH transitions because the OH line ratios are fitted much better when the dust thermal continuum is included.

  • PDF

진동 및 고체음 제어를 위한 스프링 매스댐퍼계의 효과 (The Efficiency of a Spring Mass Dampers System for the Control of Vibrations and Structure-borne Noise)

  • 손충열;구민세;인치만;최순근
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1993년도 춘계학술대회논문집; 한국과학연구소, 21 May 1993
    • /
    • pp.147-147
    • /
    • 1993
  • All types of dynamic excitation, periodical, pulse or transient in vertical, horizontal or all three directions can be effectively reduced by vibration isolation systems. Typical elements for vibration isolation control are spring units consisting of a group of helical compression springs. In all cases of shock, transient or random excitation energy absorbing dampers have to be added to the spring units in order to reduce system response in the frequency range near the natural frequency of the isolation system. The same isolation system of spring units and viscos-dampers has been used since 1979 for passive protection of buildings and structures has been proved to by very advantageous for vibration and structure borne noise control. Not only because of high vertical flexibility of the spring units, compared for example with typical rubber or neoprene mounts out also because of the horizontal of flexibility, which can be adapted by modifying the spring dimensions to nearly every requirement. It is just normal to use the same basic elements for passive isolation as for active isolation.

  • PDF

An Experimental Study of the Nozzle Lip Thickness Effect on Supersonic Jet Screech Tones

  • Aoki Toshiyuki;Kweon Yong-Hun;Miyazato Yoshiaki;Kim Heuy-Dong;Setoguchi Toshiaki
    • Journal of Mechanical Science and Technology
    • /
    • 제20권4호
    • /
    • pp.522-532
    • /
    • 2006
  • It is well known that screech tones of supersonic jet are generated by a feedback loop driven by the instability waves. Near the nozzle lip where the supersonic jet mixing layer is receptive to external excitation, acoustic disturbances impinging on this area excite the instability waves. This fact implies that the nozzle lip thickness can influence the screech tones of supersonic jet. The objective of the present study is to experimentally investigate the effect of nozzle-lip thickness on screech tones of supersonic jets issuing from a convergent-divergent nozzle. A baffle plate was installed at the nozzle exit to change the nozzle-lip thickness. Detailed acoustic measurement and flow visualization were made to specify the screech tones. The results obtained obviously show that nozzle-lip thickness significantly affects the screech tones of supersonic jet, strongly depending on whether the jet at the nozzle exit is over-expanded or under-expanded.

수치 해석을 이용하여 제진대와 제진대에 부착된 가속도계의 가속도 비교 (Comparison of Acceleration of Vibration Isolator and Accelerometer Attached Vibration Isolator Using Numerical Analysis)

  • 신동호;이정우;오재응;이정윤
    • 한국소음진동공학회논문집
    • /
    • 제23권1호
    • /
    • pp.17-24
    • /
    • 2013
  • The process of producing high precision and light weight product is always exposed to impact load or shock. Because of this, isolator device is required. To measure the response of the isolator, accelerometer is practically used. However, the measured response of the accelerometer is different to the response of the isolator. To predict the response of the accelerometer and the isolator, 2-DOF damped system with an input shock is modeled using numerical analysis. 1-DOF damped system with a base excitation is also used to predict the response of the isolator. The mass ratio, damping ratio, and natural frequency ratio are then varied. The predicted responses from the two modeling approaches are compared and large errors are found.

Herschel FIR Observations of Molecule Lines in L1448-MM

  • 이진희;이정은
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.116.1-116.1
    • /
    • 2011
  • L1448-MM, known as a class 0 YSO with a prominent outflow, was observed with the Photodetector Array Camera and Spectrometer (PACS) aboard Herschel Space Observatory by the key program, DIGIT (Dust, Ice, Gas in Time, PI: Neal Evans). The PACS covers various molecular and atomic line transitions such as CO, OH, $H_2O$, [OI], and [CII] at wavelengths from 55 to 210 ${\mu}m$. The line emission of $H_2O$, [OI], mid-J CO, and the OH fundamental transition distributes along the outflow direction although high-J CO and other OH emission peaks at the central spatial pixel. According to our excitation analysis, the CO gas has two temperature components: 300 K and 750 K, which are attributed to PDR and shock, respectively. However, the $H_2O$ gas with the rotation temperature ($T_{rot}$) of 200 K seems only affected by shock. Interestingly, the relative strength of OH transitions suggests the IR pumping process in L1448-MM. We also mapped L1448-MM in CO J=2-1 with the SRAO 6m telescope to compare with the FIR line transition maps.

  • PDF

관내 전파되는 파동에 대한 파이프의 구조적 반응에 대한 모델링 (Modeling of the Structural Response of Pipes to Internal Blast Loading)

  • 김대현;여재익
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제30회 춘계학술대회논문집
    • /
    • pp.9-13
    • /
    • 2008
  • 충격파와 같은 moving load가 특별한 속도로 관 안을 전파한다. 이 관 안을 전파하는 moving load 속도는 flexural wave의 활성화의 정도와 큰 변형을 일으키는 공진이 발생할 가능성을 결정한다. 본 연구에서, 우리는 moving load가 관안을 통과하고 있을 때의 변위의 특별해와 공진현상이 일어날 조건을 보일 것이다. 또한 이 이론적 결과를 hydrocode를 이용하여 얻은 수치해석 결과와 비교하여 정당성을 보일 것이다. 이와 같은 결과를 바탕으로 본 연구는 원자력 발전소나 탄화수소 계열의 연료를 사용하는 산업분야에서 공진현상에 의한 대형 사고를 예방하는 목적을 가지고 있다.

  • PDF

액체의 상폭발 과정에 의한 펄스 레이저 용발률의 증진 (Enhancement of Pulsed-Laser Ablation by Phase Explosion of Liquid)

  • 김동식;이호
    • 대한기계학회논문집B
    • /
    • 제25권11호
    • /
    • pp.1483-1491
    • /
    • 2001
  • Enhancement of pulsed-laser ablation by an artificially deposited liquid film is presented. Measurements of ablation rate, ablation threshold, and surface topography arc performed. Correlation between material ablation and photoacoustic effect is examined by the optical beam deflection method. The dependence of ablation rate on liquid-film thickness and chemical composition is also examined. The results indicate that photomechanical effect in the phase explosion of liquid is responsible for the enhanced ablation. The low critical temperature of liquid induces explosive vaporization with localized photoacoustic excitation in the superheat limit and increases the ablation efficiency. Experiments were carried out utilizing a Q-swiched Nd:YAG laser at near-threshold laser fluences with negligible plasma effect (up to ∼100 MW/cm$^2$).

압전 션트 댐핑을 이용한 HDD 스핀들 시스템의 진동 저감 (Vibration Suppression of HDD Spindle System Using Piezoelectric Shunt Damping)

  • 임수철;박종성;최승복;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.1089-1094
    • /
    • 2003
  • A main vibration source in HDD is arisen from high rotating disk/spindle, and vibration suppression of the disk-spindle system becomes a critical issue and a major concern for high performance of the drive. In this paper, we study the feasibility of suppressing unwanted vibration of disk-spindle system of the HDD by external shock and excitation utilizing piezoelectric shunt damping methodology. By considering dynamic characteristics of the disk-spindle system through modal analysis, a target vibration mode is determined and then the piezoelectric material is carefully integrated to the modified drive. In order to maximize improvement of vibration characteristics of the proposed system, shunt circuit is optimally designed via tuning processes. Finally, the vibration characteristics of the high rotating disk-spindle system of the proposed drive is experimentally evaluated in frequency domain.

  • PDF

공기스프링의 파라미터 변화가 특성 변화에 미치는 영향 (The Effects of Parameter Changes on the Properties of an Air Spring)

  • 장지성
    • 동력기계공학회지
    • /
    • 제18권2호
    • /
    • pp.77-82
    • /
    • 2014
  • The air spring is widely used in various fields such as a suspension system and an anti-vibration system because the natural frequency is kept constant regardless of the change in the load, spring constant is easy to change, and, vibration and shock isolation performance are excellent. The purpose of this study is to derive a nonlinear governing equation of an air spring, to analyze the effect of the various parameters on the dynamic stiffness of the air spring, and, to suggest a more efficient design method of an air spring system. In order to do so, this study investigates the impact of all the parameters that could affect the dynamic stiffness of the air spring while changing the excitation amplitude and the frequency with a developed governing equation.

Vibratory loads and response prediction for a high-speed flight vehicle during launch events

  • Kim, Jinhyeong;Park, Seoryong;Eun, Wonjong;Shin, Sangjoon;Lee, Soogab
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권4호
    • /
    • pp.551-564
    • /
    • 2016
  • High-speed flight vehicles (HSFVs) such as space launch vehicles and missiles undergo severe dynamic loads which are generated during the launch and in in-flight environments. A typical vehicle is composed of thin plate skin structures with high-performance electronic units sensitive to such vibratory loads. Such lightweight structures are then exposed to external dynamic loads which consist of random vibration, shock, and acoustic loads created under the operating environment. Three types of dynamic loads (acoustic loads, rocket motor self-induced excitation loads and aerodynamic fluctuating pressure loads) are considered as major components in this study. The estimation results are compared to the design specification (MIL-STD-810) to check the appropriateness. The objective of this paper is to study an estimation methodology which helps to establish design specification for the dynamic loads acting on both vehicle and electronic units at arbitrary locations inside the vehicle.