• Title/Summary/Keyword: Shock Detection

Search Result 100, Processing Time 0.033 seconds

Visualization of Underexpanded Jet Structure from Square Nozzle

  • Tsutsumi, Seiji;Yamaguchi, Kazuo;Teramoto, Susumu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.408-413
    • /
    • 2004
  • Numerical and experimental investigation were car-ried out to clarify the flow structure of underexpanded jet from a square nozzle. The square nozzle rep-resents one of the clustered combustors of a linear aerospike engine. From the numerical results, the three-dimensional shock wave of the underexpanded square jet was found to be composed of two shocks. One is the intercepting shock which corresponds to the shock observed in two-dimensional planar jet. The other is the recompression shock divided into two types. The expansion fans coming from the nozzle edges interact with each other at the comers of the nozzle exit, and overexpanded regions are generated. Therefore one of the two recompression shocks is formed at the comers of the nozzle exit behind the overexpanded regions. As the jet goes downstream, the overexpanded regions grow larger to coalesce at the symmetry planes. Then, the other type of the recompression shock is generated. The three-dimensional shock structure formed by the intercepting shock and the recompression shocks dominates the expansion of the jet boundary. The shock detection algorithm us-ing CFD results was developed to reveal the relation between the shock waves and the jet boundary, and it was found that the cross-sectional jet shape becomes cross-shape. The key features observed in the numerical investigation were verified by the experimental results. The shock structure at the diagonal plane was in good agreement with the experimental schlieren images. Moreover, the cross-sections visualized by the Mie scattering method confirmed that the cross-section of the jet becomes cross-shape.

  • PDF

Improved Detection of ${\gamma}-Irradiated$ Vibrio vulnificus after Heat and Cold Shock Treatment by Using Ethidium Monoazide Real-time PCR

  • Lee, Jung-Lim;Levin, Robert E.
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.788-792
    • /
    • 2009
  • Gamma $({\gamma})-irradiation$ can be used to control pathogens such as Vibrio vulnificus in seafood. The effects of irradiation on microbial cell populations (%) have been studied in order to develop detection methods for irradiated foods. The method used in this study was ethidium bromide monoazide (EMA) real-time polymerase chain reaction (PCR), using V. vulnificus specific primer, EMA, and $SYBR^{(R)}$ Green to discriminate between ${\gamma}-irradiated$ and non-irradiated cells. Confocal microscope examination showed that ${\gamma}-irradiation$ damaged portions of the cell membrane, allowing EMA to penetrate cells of irradidated V. vulnificus. ${\gamma}-Irradiation$ at 1.08 KGy resulted in log reduction ($-1.15{\pm}0.13$ log reduction) in genomic targets derived from EMA real-time PCR. The combination cold/heat shock resulted in the highest ($-1.74{\pm}0.1$ log reduction) discrimination of dead irradiated V. vulnificus by EMA real-time PCR.

TRANSIT OF THE INTERPLANETARY SHOCKS ASSOCIATED WITH TYPE II RADIO BURSTS WITHIN 1AU (Type II 전파폭발이 관측된 행성간 충격파의 1AU 내에서의 전파 과정)

  • Oh, Su-Yeon;Yi, Yu;Kim, Yong-Ha
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.3
    • /
    • pp.219-226
    • /
    • 2007
  • Among the interplanetary shock (IP shock)s observed by ACE spacecraft at 1AU during 1997 to 2000, we have selected 31 IP shocks which had triggered the interplanetary type II radio bursts detected by the WIND spacecraft while those shocks were leaving the Sun. We compared the observed IP shock propagation speeds and the IP shock transit speeds estimated by time difference between the interplanetary type II radio burst detection and the IP shock observation. Then, we found that the mean acceleration of the IP shocks between the Sun and the Earth is about $-1.02m/sec^2$, which means the deceleration contrary to the positive acceleration predicted by Parker solar wind model. It is also verified that the acceleration of the IP shock does not show any linear correlation with the shock propagation speed and the Mach number of the IP shock.

An experimental study on the ignition of dusts behind reflected shock waves (고체미립자의 반사압축파에 의한 점화에 관한 실험적 연구)

  • 백승옥
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.118-123
    • /
    • 1987
  • In relation to the dust detonatians which have imposed severe damages on the industry, the ignitability of various dusts has been investigated on a horizontal shock tube in this study. By using a newly designed air injector, very well-distributed clouds could be obtained. The proper reflected shock conditions have been generated by placing a reflector 1.5cm behind the air injector, which reflected the incident shock wave. The incident shock waves in the range of Mach number 2.8-3.3 created the postreflected shock temperature of 1200-1600K. Experimentally the ignition delay was defined as the time interval between the arrival of a reflected shock wave at dusts and the detection of visible light. Measured ignition delays of dusts investigated were located lower than 1msec under the above conditions. These values are one-order higher than those in the incident shock wave condition. In this type of ignitiion process the following three processes are considered to play important roles; heating of a particle, generation of volatile gas by endothermic devolatilization process, and its diffusion from the particle surface and the formation of stoichiometric mixture with oxidizer.

IoT-based Architecture and Implementation for Automatic Shock Treatment

  • Lee, Namhwa;Jeong, Minsu;Kim, Youngjae;Shin, Jisoo;Joe, Inwhee;Jeon, Sanghoon;Ko, Byuk Sung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.7
    • /
    • pp.2209-2224
    • /
    • 2022
  • The Internet of Things (IoT) is being used in a wide variety of fields due to the recent 4th industrial revolution. In particular, research is being conducted that combines IoT with the medical field such as telemedicine. Among them, the field of shock detection is a big issue in the medical field because the causes of shock are diverse, treatments are very complex, and require a high level of medical knowledge and experience. The transmission of infectious diseases is common when treating critically ill patients, especially patients with shock. Thus, to effectively care for shock patients, we propose an architecture that continuously monitors the patient's condition, and automatically recommends a drug injection treatment according to the patient's shock condition. The patient's hemodynamic information is continuously monitored, and the patient's shock generation information is recorded periodically. With the recorded patient information, the patient's condition is determined and automatically injected with necessary medication. The medical team can find out whether the patient's condition has improved by checking the recorded information through web applications. The study can help relieve the shortage of medical personnel and help prevent transmission of infectious disease in medical staff. We look forward to playing a role in helping medical staff by making recommendations for the diagnosis and treatment of complex and difficult shocks.

Reduced alveolar bone loss in rats immunized with Porphyromonas gingivalis heat shock protein (Porphyromonas gingivalis 열충격 단백으로 면역한 백서에서의 치조골 파괴의 감소)

  • Yi, Ni-Na;Lee, Ju-Youn;Choi, Jeom-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.4
    • /
    • pp.555-562
    • /
    • 2003
  • The present study has been performed to evaluate Porphyromonas gingivalis (P.gingivalis) heat shock protein(HSP)60 as a candidate vaccine to inhibit multiple bacteria-induced alveolar bone loss. Rats were immunized with P.gingivalis HSP60 and experimental alveolar bone loss was induced by infection with multiple periodonto -pathogenic bacteria. Post-immune rat anti-P.gingivalis HSP IgG levels were significantly elevated and have demonstrated highly significant inverse relationship with the amount of alveolar bone loss induced by multiple bacteria. Results from PCR detection of subgingival bacterial plaque indicated that the vaccine successfully eradicated the multiple pathogenic species. We concluded that P.gingivalis HSP60 could potentially be developed as a vaccine to inhibit periodontal disease induced by multiple pathogenic bacteria.

HIGH-ENERGY SOLAR PARTICLE EVENTS IN THREE DIMENSIONS

  • Kocharov, Leon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.45.1-45.1
    • /
    • 2010
  • Using SOHO particle and EUV detection and radio spectrograms from both ground-based and spaceborne instruments, we have studied the first phase of major solar energetic particle (SEP) events associated with wide and fast coronal mass ejections (CMEs) centered at different solar longitudes. Observations support the idea that acceleration of SEPs starts in the helium-rich plasma of the eruption's core well behind the CME leading edge, in association with coronal shocks and magnetic reconnection caused by the CME liftoff; and those "coronal" components dominate during the first ~1.5 hour of the SEP event, not yet being hidden by the CME-bow shock in solar wind. At magnetic connection to the eruption's periphery, onset of SEP emission is delayed for a time of the lateral expansion that is visualized by global coronal (EIT) wave. The first, "coronal" phase of SEP acceleration is followed by a second phase associated with CME-driven shock wave in solar wind, which accelerates high-energy ions from a helium-poor particle population until the interplanetary shock slows down to below 1000 km/s. Based on these and other SOHO observations, we discuss what findings can be expected from STEREO in the SOHO era perspective.

  • PDF

SSD PCB Component Detection Using YOLOv5 Model

  • Pyeoungkee, Kim;Xiaorui, Huang;Ziyu, Fang
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.1
    • /
    • pp.24-31
    • /
    • 2023
  • The solid-state drive (SSD) possesses higher input and output speeds, more resistance to physical shock, and lower latency compared with regular hard disks; hence, it is an increasingly popular storage device. However, tiny components on an internal printed circuit board (PCB) hinder the manual detection of malfunctioning components. With the rapid development of artificial intelligence technologies, automatic detection of components through convolutional neural networks (CNN) can provide a sound solution for this area. This study proposes applying the YOLOv5 model to SSD PCB component detection, which is the first step in detecting defective components. It achieves pioneering state-of-the-art results on the SSD PCB dataset. Contrast experiments are conducted with YOLOX, a neck-and-neck model with YOLOv5; evidently, YOLOv5 obtains an mAP@0.5 of 99.0%, essentially outperforming YOLOX. These experiments prove that the YOLOv5 model is effective for tiny object detection and can be used to study the second step of detecting defective components in the future.

The development of the HID Electronic Ballast for the street lamp with the leakage Current detection and circuit breaker function (누전검출 및 차단기능을 가진 가로등용 HID 전자식 안정기 개발)

  • Park, Chong-Yeun;Lim, Byoung-Noh;Choi, Won-Ho
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.99-102
    • /
    • 2006
  • We developed the electronic ballast for the street HID lames with the leakage current detection and circuit breaker function. By detecting the leakage current and breaking the system we are protected from the electric shock and the ballast is safe from the electric damage at the time of the continuous reignition state.

  • PDF

Ion-Based Micro Vibration Sensor for Ultra-High Frequency Vibration Detection (초고주파수 진동 감지를 위한 이온 질량기반 진동센서)

  • Kim, Kwang-Ho;Seo, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.9
    • /
    • pp.728-732
    • /
    • 2008
  • This paper presents ion-based micro vibration sensor for the ultra-high frequency vibration detection. Presented sensor uses the motion of anion and cation in an electrolyte. Electrolyte vibration sensors have the high shock survival characteristics and a simple read-out circuit because of the small mass and own charges of ions. Presented sensor measures the induced electric potential by the mechanical-electrical coupling. It consist of electrolyte chamber and detection electrode. Electrolyte chamber was fabricated by PDMS molding. Detection electrode was made of gold evaporation on pyrex glass. Size of electrolyte chamber was designed as $600{\times}600{\times}100um$. Detection electrode had 200nm-thick and 42um-gap. In the experimental study, 5.8M sodium Chloride (NaCl) solution was used as electrolyte in 36nl-chamber. Mechanical vibration was measured from 2kHz to 4MHz.