• 제목/요약/키워드: Shock Cell

검색결과 488건 처리시간 0.023초

후방 발열이 있는 경사 충격파의 불안정성 (INSTABILITY OF OBLIQUE SHOCK WAVES WITH HEAT ADDITION)

  • 최정열;신재렬;조덕래
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.232-235
    • /
    • 2007
  • A comprehensive numerical study was carried out to identify the on-set condition of the cell structures of oblique detonation waves (ODWs). Mach 7 incoming flow was considered with all other flow variables were fixed except the flow turning angles varying from 35 to 38. For a given flow conditions theoretical maximum turning angle is $38.2^{\circ}$ where the oblique detonation wave may be stabilized. The effects of grid resolution were tested using grids from $255{\times}100$ to $4,005{\times}1,600$. The numerical smoked foil records exhibits the detonation cell structures with dual triple points running opposite directions for the 36 to 38 turning angles. As the turning angle get closer to the maximum angle the cell structures gets finer and the oscillatory behavior of the primary triple point was observed. The thermal occlusion behind the oblique detonation wave was observed for the $38^{\circ}$ turning angle.

  • PDF

열충격단백질 70에 대한 연구 (A Study in Heat Shock Protein 70)

  • 남기원;김진상;최진호
    • The Journal of Korean Physical Therapy
    • /
    • 제12권1호
    • /
    • pp.147-151
    • /
    • 2000
  • Heat shock protein 70(HSP70) is induced by elevated temperature and many other types of stresses in cell. HSP70 ensures cell survival under stressful condition that would lead to irreversible cell damage and ultimately to cell death. HSP70 plays essential role in the synthesis, transport, and folding of proteins and is often refferred to as molecular chaperones. Increased levels of HSPs occur after arthritis, infection, imflammation, autoimmune disease and CNS injury such as infarction, ischemia, seizure and Alzheimer's disease. Also, HSP70 increases resistance to apoptosis. The recent studies that the expression of the HSP has been processed at various field. However, they an still relatively line studied in clinically application. This review summarizes the fundamental knowledge of HSP.

  • PDF

수소연료전지자동차용 절연저항 측정시스템 개발에 관한 연구 (Study on Development of the Isolation Resistance Measurement System for Hydrogen Fuel Cell Vehicle)

  • 이기연;김동욱;문현욱;김향곤
    • 전기학회논문지
    • /
    • 제60권5호
    • /
    • pp.1068-1072
    • /
    • 2011
  • Hydrogen Fuel Cell Vehicle(HFCV) is system that uses electrical energy of fuel cell stack to main power source, which is different system with other vehicles that use high-voltage, large-current. Isolation performance of this system which is connected with electrical fire and electrical shock is important point. Isolation resistance of electric installation is divided according to working voltage, it follows criterion more than $100{\Omega}$/VDC (or $500{\Omega}$/VAC) about system operation voltage in a hydrogen fuel cell vehicle. Although measurement of isolation resistance in a hydrogen fuel cell vehicle is two methods, it uses mainly measurement by megger. However, the present isolation resistance measurement system that is optimized to use in electrical facilities is unsuitable for isolation performance estimation of a hydrogen fuel cell vehicle because of limit of maximum short current and difference of measurement resolution. Therefore, this research developed the isolation resistance measurement system so that may be suitable in isolation performance estimation of a hydrogen fuel cell vehicle, verified isolation performance about known resistance by performance verification of laboratory level about developed system, and executed performance verification through comparing results of developed system by performance verification of vehicle level with ones of existing megger. Developed system is judged to aid estimation and upgrade of isolation performance in a hydrogen fuel cell vehicle hereafter.

자외선 B 파로 유도된 Hairless Mouse에서 타닌의 피부 독성 억제효과 및 Heat Shock Protein 70의 생성억제 효과 (Inhibitory Effects of Tannic Acid on the Skin Toxicity and Heat Shock Protein Induction by UVB Irradiation in Hairless Mouse)

  • 이세윤;이민경;장동덕;안령미;안형수
    • Toxicological Research
    • /
    • 제13권1_2호
    • /
    • pp.79-86
    • /
    • 1997
  • Inhibitory effects of tannic acid on skin toxicity and heat shock protein induced by UVB were investigated. Tannic acid was administered either topically or orally for 3 days to hairless mice, which were previously irradiated with UVB. UVB was found to cause skin erythema . However, the skin erythema was decreased when tannic acid was administered either topically or orally. The heat shock proteins, Hsp-78 kDa and 70 kDa, were induced by UVB irradiation, but the induction was decreased by treatment of tannic acid in both topically and orally administered groups. The hsp induction was more prominent in orally administered groups than in topically administerd groups. However, the difference between two groups was not statistically significant. The route of administrations, topical and oral, does not affect the activity of tannic acid. In the skin tissue observation, tannic acid regenerated the epithelial cells with 7-9 cell layers which were injured by UVB. In conclusion, tannic acid has an ability to protect against UVB irradiation and regenerate the skin.

  • PDF

Non-Invasive Environmental Detection using Heat Shock Gene-Green Fluorescent Protein Fusions

  • 차형준
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 춘계학술발표대회
    • /
    • pp.355-356
    • /
    • 2000
  • Three 'stress probe' plasmids were constructed and characterized which utilize a green fluorescent protein (CFP) as a non-invasive reporter to elucidate Escherichia coli cellular stress responses in quiescent or 'resting' cells. Facile detection of cellular stress levels was achieved by fusion of three heat shock stress protein promoter elements, those of the heat shock transcription factor ${\sigma}^{32}$, pretense subunit ClpB, and chaperone DnaK, to the reporter gene $gfp_{uv}$. When perturbed by chemical or physical stress (such as heat shock, nutrient (amino acid) limitation, addition of IPTG, acetic acid, ethanol, phenol, antifoam, and salt (osmotic shock), the E. coli cells produced GFPuv which was easily detected from within the cells as emitted green fluorescence. A temporal and amplitudinal mapping of these responses was performed, demonstrating regions where quantitative delineation of cell stress was afforded.

  • PDF

Stress Responses through Heat Shock Transcription Factor in S. cerevisiae

  • Hahn, Ji-Sook;Hu, Zhanzhi;Thiele, Dennis J.;Lyer, Vishwanath R.
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2005년도 International Meeting of the Microbiological Society of Korea
    • /
    • pp.105-109
    • /
    • 2005
  • Heat Shock Transcription Factor (HSF), and the promoter heat Shock Element (HSE), are among the most highly conserved transcriptional regulatory elements in nature. HSF mediates the transcriptional response of eukaryotic cells to heat, infection and inflammation, pharmacological agents, and other stresses. While HSF is essential for cell viability in yeast, oogenesis and early development in Drosophila, extended life-span in C. elegans, and extra-embryonic development and stress resistance in mammals, little is known about its full range of biological target genes. We used whole genome analyses to identify virtually all of the direct transcriptional targets of yeast HSF, representing nearly three percent of the genomic loci. The majority of the identified loci are heat-inducibly bound by yeast HSF, and the target genes encode proteins that have a broad range of biological functions including protein folding and degradation, energy generation, protein secretion, maintenance of cell integrity, small molecule transport, cell signaling, and transcription. Approximately 30% of the HSF direct target genes are also induced by the diauxic shift, in which glucose levels begin to be depleted. We demonstrate that phosphorylation of HSF by Snf1 kinase is responsible for expression of a subset of HSF targets upon glucose starvation.

  • PDF

연료전지 자동차 세계기술규정의 감전보호기준 연구 (Research on Standards for Protection against Electric Shock in Global Technical Regulations of Fuel Cell Vehicle)

  • 황보천;이규명;유경준
    • 한국수소및신에너지학회논문집
    • /
    • 제21권3호
    • /
    • pp.167-183
    • /
    • 2010
  • This paper analyzes the backgrounds of the standards for protection against electric shock in Global Technical Regulations (GTR) of Fuel Cell Vehicle (FCV). Targets on research were high voltage criteria, safety current, isolation and grounding resistance, time limitation, energy, adequate clearance, and test procedure. Based on human impedance and effect of current in IEC 60479-1, safety of human was examined. Then, isolation and grounding circuit model of FCV were analyzed theoretically. The results give several suggestions: touch voltage less than 25V, AC energy less than 0.0813J, separation considering middle finger length, grounding resistance less than $0.2\Omega$, maximum AC ground voltage of 1V (rms), and isolation resistance between earth and electrical chassis. In MATLAB/Simulink environment, error characteristics of isolation resistance measurement procedure using internal DC sources were analyzed under variations of internal resistance of voltmeter and isolation resistance.

Mixer-Ejector 노즐 유동장에 관한 수치해석 (Computational Analysis of the Flowfield of a Mixer-Ejector Nozzle)

  • Park, Yun-Ho
    • 한국추진공학회지
    • /
    • 제6권1호
    • /
    • pp.71-82
    • /
    • 2002
  • 본 연구에서는 2차원의 압축성 Navier-Stokes 코드를 개발하여 mixer-ejector 노즐의 유동장 해석을 다양한 덕트와 노즐 면적비 및 노즐 압력비에 대하여 계산을 수행하였다. 덕트와 노즐 면적비 계산에서는 먼저 효율적인 2차 유동의 유입을 위한 최적의 면적비가 있음을 볼 수 있었다. 높은 면적비에서는 입구 자유유동의 적절한 혼합없이 mixing duct를 그대로 통과하는 것을 볼 수 있었고, 낮은 면적비에서는 제트의 경계가 유입 유동에 장애물로 작용하는 것을 볼 수 있었다. 노즐 압력비의 계산에 있어서는 shroud 벽면과 shock cell structure 간에 상호작용이 작다면 유입유량은 압력비에 따라 증가하는 것을 볼 수 있었다.

골모세포에서 열자극에 의한 Hsp27 발현에 대한 연구 (HSP27 EXPRESSION IN OSTEOBLAST BY THERMAL STRESS)

  • 임재석;김병렬;권종진;장현석;이의석;전상호;우현일
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제30권1호
    • /
    • pp.11-21
    • /
    • 2008
  • Aim of the study: Thermal stress is a central determinant of osseous surgical outcomes. Interestingly, the temperatures measured during endosseous surgeries coincide with the temperatures that elicit the heat shock response of mammalian cells. The heat shock response is a coordinated biochemical response that helps to protect cells from stresses of various forms. Several protective proteins, termed heat shock proteins (hsp) are produced as part of this response. To begin to understand the role of the stress response of osteoblasts during surgical manipulation of bone, the heat shock protein response was evaluated in osteoblastic cells. Materials & methods: With primary cell culture studies and ROS 17/2.8 osteoblastic cells transfected with hsp27 encoding vectors culture studies, the thermal stress response of mammalian osteoblastic cells was evaluated by immunohistochemistry and western blot analysis. Results: Immunocytochemistry indicated that hsp27 was present in unstressed osteoblastic cells, but not fibroblastic cells. Primarily cultured osteoblasts and fibroblasts expressed the major hsp in response to thermal stress, however, the small Mr hsp, hsp27 was shown to be a constitutive product only in osteoblasts. Creation of stable transformed osteoblastic cells expressing abundant hsp27 protein was used to demonstrate that hsp27 confers stress resistance to osteoblastic cells. Conclusions: The demonstrable presence and function of hsp27 in cultured bones and cells implicates this protein as a determinant of osteoblastic cell fate in vivo.

열충격 시험을 통한 태양전지 특성 (Characteristics of Solar Cell by Thermal Shock test)

  • 강민수;전유재;손선익;김도석;신영의
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.91-95
    • /
    • 2012
  • 본 연구에서는 열충격 시험을 통하여 Cell레벨에서의 효율저하 특성을 분석하였다. 열충격 시험은 PV모듈의 시험 규격인 KS C IEC-61215를 이용하여 보다 가혹한 조건인 $-40^{\circ}C$에서 $120^{\circ}C$의 조건으로 500사이클 수행하였다. I-V 측정을 통하여 효율을 분석한 결과, 열충격 시험 전 13.9%에서 열충격 시험 후 11.0%로 효율이 저하 됐으며, 감소율은 20.9% 나타났다.EL촬영을 통해 표면을 분석한 결과 Ribbon접합부 및 Gridfinger의 손상으로 확인 됐으며, 보다 정확한 효율 저하의 원인을 분석하기 위해 단면분석을 실시한 결과 표면손상으로 확인 되었던 위치의 Cell내부에서도 Crack을 확인 할 수 있었다. 또한 FF값을 분석한 결과 열충격 시험 전 72.3%에서 시험 후 62.0%로 11.8%의 감소율을 보였다. 따라서, 경년 시 나타나는 효율저하는 Cell자체의 소모전력 증가와 외부환경에 의한 표면 손상 및 Cell내부의 Crack에 기인하여 가속된다고 판단된다.

  • PDF