• 제목/요약/키워드: Shipbuilding simulation

검색결과 242건 처리시간 0.02초

선박내 접수탱크 진동에 대한 실험/이론적 연구 (Experimental and analytical study on hydroelastic vibration of tank)

  • 김극수;조현동;공영모;허주호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.96-100
    • /
    • 2008
  • In this paper, a experimental and theoretical study is carried out on the hydroelastic vibration for a rectangular bottom and side plate of tank. It is assumed that the tank wall is clamped along the plate edges. The fluid velocity potential is used for the simulation of fluid domain and to obtain the added mass due to plate vibration. It is assumed that the fluid is imcompressible and inviscid. Assumed mode method is utilized to the plate model and hydrodynamic force is obtained by the proposed approach. The coupled natural frequencies are obtained from the relationship between kinetic energies of a wall including fluid and the potential energy of the wall. The theoretical result is compared with the three-dimensional finite element method. In order to verify the result, modal test was carried out for bottom/side plate of tank model by using impact hammer. It was found the fundamental natural frequency of bottom plate is lower than that of side plate of tank and theoretical result was in good agreement with that of commercial three-dimensional finite element program.

  • PDF

Numerical and experimental study on the impact between a free falling wedge and water

  • Dong, Chuanrui;Sun, Shili;Song, Hexing;Wang, Qiang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.233-243
    • /
    • 2019
  • In this paper, numerical and experimental studies are performed to investigate the liquid impact on a free falling wedge. In the numerical simulation, the structure is assumed to be rigid and the elastic response is ignored. The fully nonlinear coupling between wedge and water is considered by an auxiliary function method based on the Boundary Element Method (BEM). At the intersection of the wedge surface and liquid surface, two coincident nodes are used to decouple the boundary conditions. The Eulerian free surface conditions in the local coordinate system are adopted to update the deformed free surface. In the experiments, five pressure sensors are fixed on each side of the wedge which is released from an experimental installation. Steel and aluminum wedges that have different structural elasticity are used in the experiments to investigate the influence of structural elasticity on the impact force. Numerical results are compared with experimental data and they agree very well. The influence of fluid gravity, body mass, initial entry speed and deadrise angle on the impact pressure are further investigated.

진공적층 시뮬레이션을 이용한 FRP 선체 적층 전략 연구 (Study of Laminating Strategy for FRP Hull Using Resin Infusion Simulation)

  • 정진욱;이병성;강병윤;한갑수;서성부
    • 한국해양공학회지
    • /
    • 제23권2호
    • /
    • pp.98-103
    • /
    • 2009
  • The resin infusion method is the latest technology of FRP laminating and cleaning to improve FRP hull quality. This method is focused on how to arrange infusion channels for the laminiating strategy. The laminating strategy using the resin infusion method has been utilized to complete the infusion work and remove the cavities on the FRP surface within the curing time. It is resulting from the arrangement of infusion and vacuum channels, the resin property, and the combination of FRP. This strategy has been depended on the field experience for manufacturing FRP without the resin infusion simulation. This study can help to improve the efficiency of FRP fabrication with the laminating strategy including the resin infusion simulation instead of the field experience.

디지털 휴먼 모델링 도구를 이용한 작업 개선에 관한 연구 (A Study for Improvement of Work using Digital Human Modeling)

  • 김동준;박주용;김현우;장성록
    • 한국안전학회지
    • /
    • 제23권2호
    • /
    • pp.51-56
    • /
    • 2008
  • In these days, work-related musculoskeletal disorders(WMSDs) is one of the issues in the shipbuilding industry. As the number of injured workers and demands for worker's compensation have rapidly increased, improvement of work conditions and environments to prevent WMSDs has been more demanded. To reduce WMSDs' hazards in the shipbuilding industry, simulation technique which showed it's ability of increasing the manufacturing productivity was applied, because simulation technique has the evaluation ability for a worker's danger level of production process by RULA(Rapid Upper Limb Assesment). In this research, worker's altitude had modeled and worker's action has simulated. After the caution level was evaluated, we pointed out clues which had high workload. To reduce work-load, we applied ergonomic principles for improving working conditions and environments. Improved working conditions and environments were simulated using human modelling and simulation and their workload were evaluated again.

Simulation and Experimental Study of A TLP Type Floating Wind Turbine with Spoke Platform

  • Kim, Hyuncheol;Kim, Imgyu;Kim, Yong Yook;Youn, DongHyup;Han, Soonhung
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제2권4호
    • /
    • pp.179-191
    • /
    • 2016
  • As the demand for renewable energy has increased following the worldwide agreement to act against global climate change and disaster, large-scale floating offshore wind systems have become a more viable solution. However, the cost of the whole system is still too high for practical realization. To make the cost of a floating wind system be more economical, a new concept of tension leg platform (TLP) type ocean floating wind system has been developed. To verify the performance of a 5-MW TLP type ocean floating wind power system designed by the Korea Advanced Institute of Science and Technology, the FAST simulation developed by the National Renewable Energy Laboratory is used. Further, 1/50 scale model tests have been carried out in the ocean engineering tank of the Research Institute of Medium and Small Shipbuilding, Korea. This paper compares the simulation and ocean engineering tank test results on motion prediction and tension assessment of the TLP anchor.

소형 어선용 이중강판 방향타의 유체역학적 특성 조사 (Investigation on the Hydrodynamic Characteristics of Double Plate Steel Rudder for Small Fishing Boat)

  • 안남현;박희승
    • 동력기계공학회지
    • /
    • 제16권6호
    • /
    • pp.24-29
    • /
    • 2012
  • In this study, the numerical simulation has been performed to investigate the hydrodynamic evaluation between double plate steel rudder and newly designed foil type rudder for small fishing boat. The simulations are carried out in 2 speed ranges with 7 variations of flow's angle of attack which is at intervals of about 5 degree respectively. As the well-known commercial code, FLUENT and CATIA are used as the solver. The simulation results show that new designed foil type rudder is better than conventional double plate rudder in terms of Lift and Drag of running boat in the water.

Design of an integrated network management system for telecom subsystem in offshore plants

  • Kang, Nam-seon;Kim, Nam-hun;Lee, Seon-ho;Kim, Young-goon;Yoon, Hyeon-kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권8호
    • /
    • pp.863-869
    • /
    • 2015
  • This study analyzed the offshore plant industry and related regulations such as ISO, IEC, and Norsok Standards to develop an integrated network management system (INMS) capable of both on-site and remote management and configuration of IP-based network equipment in offshore plants. The INMS was designed based on actual specifications and POS plans, and a plan of management was verified through an offshore plant engineering company. Various modules such as PAGA interface modules, CCTV, IP-PBX, and HF-radio communication modules were developed for system implementation. Protocol and data design and screen design were followed by framework development and introduction of the automatic satellite communication function.

조선 도장공정 운영전략 수립을 위한 사전모의실험기법 (Rough-cut simulation algorithm for the decision of operations policy at the block paint shop in shipbuilding)

  • 정귀훈;박창규;민상규;박주철;조규갑
    • 산업공학
    • /
    • 제14권1호
    • /
    • pp.59-66
    • /
    • 2001
  • This paper introduces the case study that has been performed at the block paint shop, Hyundai Heavy Industries. First of all, the overall production processes of shipbuilding and research activities conducted by Korean are reviewed with a view-point of production planning. Then HYPOS(Hyundai heavy industries Painting shop Operation System) project is briefly described, which has several modules such as planning module, scheduling module, work order module, and DB(database) management module. Although the HYPOS system has several modules, this paper mainly focuses on the planning module that utilizes the rough-cut simulation algorithm to make a decision about the policy for production schedule. The HYPOS has been operated since June, 2000 and the operation data has been collected for the purpose of future evaluation about the performance of HYPOS system. The evaluation of HYPOS will be shown in a public domain as soon as the enough operation data is available.

  • PDF

An efficient finite element analysis model for thermal plate forming in shipbuilding

  • S.L. Arun Kumar;R. Sharma;S.K. Bhattacharyya
    • Ocean Systems Engineering
    • /
    • 제13권4호
    • /
    • pp.367-384
    • /
    • 2023
  • Herein, we present the design and development of an efficient finite element analysis model for thermal plate forming in shipbuilding. Double curvature shells in the ship building industries are primarily formed through the thermal forming technique. Thermal forming involves heating of steel plates using heat sources like oxy-acetylene gas torch, laser, and induction heating, etc. The differential expansion and contraction across the plate thickness cause plastic deformation and bending of plates. Thermal forming is a complex forming technique as the plastic deformation and bending depends on many factors such as peak temperature, heating and cooling rate, depth of heated zone and many other secondary factors. In this work, we develop an efficient finite element analysis model for the thermo-mechanical analysis of thermal forming. Different simulations are reported to study the effect of various parameters affecting the process. Temperature dependent properties are used in the analysis and the finite element analysis model is used to identify the critical flame velocity to avoid recrystallization of plate material. A spring connected plate is modeled for structural analysis using spring elements and that helps in identifying the resultant shapes of various thermal forming patterns. Finally, detailed simulation results are reported to establish the efficacy, applicability and efficiency of the designed and developed finite element analysis model.

유전자 알고리즘을 이용한 조선 소조립 로봇용접 공정 작업 계획 및 3-D 시뮬레이션 (Work Planning Using Genetic Algorithm and 3-D Simulation at a Subassembly Line of Shipyard)

  • 강현진;박주용;박현철
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2004년도 춘계 학술발표대회 개요집
    • /
    • pp.18-20
    • /
    • 2004
  • This study is to find the optimal work plan of robot welding in the subassembly process of shipbuilding and to verify the found solution through 3-D simulation. The optimal work plan was established by evenly distributing the work amount to each stage and finding the shortest work sequence. The shortest work sequence was found by using the genetic algorithm. The result was compared with the practically adopted case and verified through the 3-D simulation.

  • PDF