• Title/Summary/Keyword: Shipbuilding execution schedule

Search Result 3, Processing Time 0.021 seconds

Design and Development of Scenario-Based Simulation System to Improve Shipbuilding Execution Scheduling Assessment -A Case Study on Panel Line- (시나리오 기반 조선 실행계획 평가 향상을 위한 시뮬레이션 시스템 개발 -패널라인 개발 사례를 중심으로-)

  • Back, Myunggi;Kim, Youngmin;Hwang, Inhyuck;Lee, Kwang-Kook;Ryu, Cheolho;Shin, Jong Gye
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.3
    • /
    • pp.211-223
    • /
    • 2013
  • Today's ever-increasingly competitive shipbuilding market makes it essential for a shipbuilding company to have more efficient production processes and higher productivity as well as better design ability to obtain its competitiveness. A well-established production execution schedule plays an indispensable role to achieve this goal. Most shipbuilding companies carry out an evaluation on their mid-term plan once it is established. However, no evaluation activity exists for a production execution schedule, because practically all the companies depend on the field workers for the production execution scheduling. In this study, a prototype of a ship production execution schedule evaluation system is developed based on the component based design (CBD) methodology. This system enables one to make a production execution schedule that reflects up-to-date shipyard situation and to validate whether the schedule is feasible or not by running a production simulation according to the schedule. Users can also make use of the system as a decision supporting tool that compares several different execution schedules and evaluates which one is the best execution schedule.

Development of Shipbuilding Execution Scheduling Support System using Mobile Device : A Case Study for a Panel Block Assembly Shop (모바일 기기를 활용한 조선 생산 실행계획 지원 시스템 개발 : 판넬라인 개발 사례를 중심으로)

  • Hwang, Inhyuck;Song, Jungkyu;Back, Myunggi;Ryu, Cheolho;Lee, Kwangkook;Shin, Jong Gye
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.4
    • /
    • pp.262-271
    • /
    • 2013
  • Owing to the development of mobile communication technology during the last a few years, the number of users of mobile devices such as the smartphone and the tablet PC has increased rapidly. As a result, the range of applications of the mobile devices has also been greatly expanded from an application for the convenience of daily life to an application for assisting the operations of industrial fields. Especially, portability of mobile devices can provide great help in collecting and using information on the production site. In shipbuilding production processes, it is difficult to collect changes of circumstance in the field and reflect the changes to schedule due to the low production automation rate and frequent changes in schedule. In this study, we propose a system to solve the problems of shipbuilding production processes such as the ones described above by using mobile devices. First of all, we organize the production information and production processes of the panel line through the analysis of shipyard panel line operations. Next, we have developed a system that can support the production execution plan of the panel line and monitor the production processes in the field. The system was developed utilizing application virtualization to allow access to the system from various platforms of mobile devices and PC's. The system was implemented using ooCBD methodology considering the future expansion of the system and ease of maintenance.

A Simulation-Based Capacity Analysis of a Block-Assembly Process in Ship Production Planning (시뮬레이션을 이용한 블록조립 공정 능력 분석)

  • Song, Young-Joo;Lee, Dong-Kun;Choe, Sung-Won;Woo, Jong-Hun;Shin, Jong-Gye
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.1
    • /
    • pp.78-86
    • /
    • 2009
  • A capacity calculation and process analysis is a very important part for the entire ship production planning. Ship's production plan is set up with a concept that the product is produced based on the capacity achievable by the processes while general manufacturing sets up the production plan based on product lead-time. Therefore, in case the calculation of capacity for each process of shipbuilding yard is different from actual conditions, a series of production plan - ship table composition, dual schedule plan and execution schedule plan, etc - may accumulate errors, lose reliability of planning information and cause heavy cost deficit in this course. In particular, in case of new shipbuilding yard, stocks between processes are built up and half blocks are not supplied in timely manner, and that is sometimes due to the clumsiness of the operator but it is more often because of the capacity to execute each process is not logically calculated. Therefore, this paper presents the process to calculate the assembly leadtime and assembly process capacity for shipbuilding yard assembly factory. This paper calculated the block type for calculation of assembly lead time based on block DAP(detailed assembly procedure), and introduced cases that calculate production capacities by assembly surface plate by considering the surface plate occupied area of the blocks that change depending on assembly field area and assembly processes through assembly simulation.