• Title/Summary/Keyword: Shipboard Combat System

Search Result 6, Processing Time 0.027 seconds

A Study on Security Requirements of Shipboard Combat System based on Threat Modelling (위협 모델링 기반 함정 전투체계 보안 요구사항에 관한 연구)

  • Seong-cheol Yun;Tae-shik Shon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.281-301
    • /
    • 2023
  • The shipboard combat system is a key system for naval combat that supports a command and control process cycle consisting of Detect - Control - Engage in real time to ensure ship viability and conduct combat missions. Modern combat systems were developed on the basis of Open Architecture(OA) to maximize acceptance of latest technology and interoperability between systems, and actively introduced the COTS(Commercial-of-the-shelf). However, as a result of that, vulnerabilities inherent in COTS SW and HW also occurred in the combat system. The importance of combat system cybersecurity is being emphasized but cybersecurity research reflecting the characteristics of the combat system is still lacking in Korea. Therefore, in this paper, we systematically identify combat system threats by applying Data Flow Diagram, Microsoft STRIDE threat modelling methodology. The threats were analyzed using the Attack Tree & Misuse case. Finally we derived the applicable security requirements which can be used at stages of planning and designing combat system and verified security requirements through NIST 800-53 security control items.

A Study on the Implementation Method of Artificial Intelligence Shipboard Combat System (인공지능 함정전투체계 구현 방안에 관한 연구)

  • Kwon, Pan Gum;Jang, Kyoung Sun;Kim, Seung Woo;Kim, Jun Young;Yun, Won Hyuk;Rhee, Kye Jin
    • Convergence Security Journal
    • /
    • v.20 no.2
    • /
    • pp.123-135
    • /
    • 2020
  • Since AlphaGo's Match in 2016, there has been a growing calls for artificial intelligence applications in various industries, and research related to it has been actively conducted. The same is true in the military field, and since there has been no weapon system with artificial intelligence so far, effort to implement it are posing a challenge. Meanwhile, AlphaGo Zero, which beat AlphaGo, showed that artificial intelligence's self-training data-based approach can lead to better results than the knowledge-based approach by humans. Taking this point into consideration, this paper proposes to apply Reinforcement Learning, which is the basis of AlphaGo Zero, to the Shipboard Combat System or Combat Management System. This is how an artificial intelligence application to the Shipboard Combat System or Combat Management System that allows the optimal tactical assist with a constant win rate to be recommended to the user, that is, the commanding officer and operation personnel. To this end, the definition of the combat performance of the system, the design plan for the Shipboard Combat System, the mapping with the real system, and the training system are presented to smoothly apply the current operations.

A Study on the Application Model of High Availability of shipboard Combat Systems (함정 전투체계 고가용도 모델 적용에 관한 연구)

  • Lee, Kyoung-Haing;Han, Dong-Soo
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.4
    • /
    • pp.119-125
    • /
    • 2015
  • This research has conducted high availability system modeling to assure the reliability of shipboard combat systems. Shipboard combat system is a way for efficient execution of duty and a crucial battlefield management system that determines the outcome of battle in the modern war. Especially in regard to a network-centric operational environment in the future, even 1% of malfunction can lead to fatal consequences for the outcome of war. So combat system should be designed by high availability system which is a "always-on" service. In this point of view, This work describes an architecture-based various high availability model and proposed alternative high available systems that can achieve more than 99.9999% accuracy at a minimum. This paper also provides an applicable model with which system engineers analyze out system failure and recovery process by employing computerized tools.

History and Development Status of Aegis Ships (이지스함의 역사와 발전 현황)

  • Go, Kyung-min;Jeon, Eun-seon;Park, Tae-yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.433-435
    • /
    • 2015
  • Aegis Combat System(ACS) is a shipboard combat system developed by U.S. Navy. Its name, Aegis, came from a shield 'Aegis' in greek mythology, which Zeus gave to his daughter Athena. U.S. Navy uses Aegis ships(ships which mount ACS) as their main surface forces. It is known as one of the greatest anti-air warfare ship in the world by its ability to detect air threats with AN/SPY-1, phased array radar, superior Target management and command and control capabilities of the combat system, and SM series interceptors. After first Aegis cruiser USS Ticonderoga was deployed at 1983, U.S. Navy continuously put effort in developing Aegis Combat Systems and Aegis ships. They also improve old fashion existing ships by modernize them. In this Paper, to deduct a lesson which Korea Navy should benchmark, it is went through that a history of Aegis ships and development of ACS, and also its feature.

  • PDF

The implication derived from operating control organization and feasible weapon system analysis of Zumwalt(DDG-1000) Class Destroyer (Zumwalt(DDG-1000)급 구축함의 운용 시스템 및 탑재 가능 무기체계 분석을 통한 시사점 도출)

  • Lee, Hyung-Min
    • Strategy21
    • /
    • s.34
    • /
    • pp.178-206
    • /
    • 2014
  • The battlefield environment in the maritime has been changed by advanced IT technology, variation of naval warfare condition, and developed military science and technology. In addition, state-of-the-art surface combatants has become to multi-purpose battleship that is heavily armed in order to meet actively in composed future sea battlefield condition and perform multi-purpose missions as well as having capability of strategic strike. To maximize the combat strength and survivability of ship, it is not only possible for Zumwalt(DDG-1000) class combatant to conduct multi-purpose mission with advanced weapon system installation, innovative hull form and upper structure such as deckhouse, shipboard high-powered sensor, total ship computing environment, and integrated power control but it was designed so that can be installed with energy based weapon systems in immediate future. Zumwalt class combatant has been set a high value with enormous threatening surface battleship in the present, it seems to be expected that this ship will be restraint means during operation in the littoral. The advent of Zumwalt class battleship in the US Navy can be constructed as a powerful intention of naval strength building for preparing future warfare. It is required surface ship that can be perform multi-purpose mission when the trend of constructed surface combatants was analyzed. In addition, shipboard system has been continuously modernized to keep the optimized ship and maximize the survivability with high-powered detection and surveillance sensor as well as modularity of combat system to efficient operation.

Development of TLCSM Based Integrated Architecture for Applying FRACAS to Defense Systems (국방 무기체계 FRACAS 적용을 위한 TLCSM 기반 통합 아키텍처 구축)

  • Jo, Jeong-Ho;Song, Hyeon-Su;Kim, Bo-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.190-196
    • /
    • 2020
  • FRACAS(Failure Reporting, Analysis and Corrective Action System) has been applied in various industries to improve the reliability of the systems. FRACAS is effective in improving reliability by repeating failure analysis, proper corrective action, and result verification for identified failures. However, FRACAS has many limitations in terms of process, data collection and management to be integrated into the existing development environment. In the domestic defense industry, studies on the development of FRACAS system and process improvement have been conducted to solve the difficulties of applying FRACAS, but most of them are concentrated in the operation/maintenance phase. Since FRACAS should be conducted in consideration of TLCSM(Total Life Cycle System Management), it is necessary to study the reference architecture so that FRACAS can be applied from the early design phase. In this paper, we studied the TLCSM-based integrated architecture considering the system life cycle phases, FRACAS closed-loop process, and FRACAS essentials in order to effectively apply FRACAS throughout the life cycle of defense systems. The proposed architecture was used as a reference model for FRACAS in a shipboard combat system.