• 제목/요약/키워드: Ship to Ship

검색결과 8,247건 처리시간 0.029초

선박간 충돌 위험상황에서의 항해사 정보처리 특성에 관한 연구 (Mariner's Information Processing Characteristics in Ship-to-Ship Collision Situation)

  • 김비아;오진석;이세원;이재식
    • 한국안전학회지
    • /
    • 제23권1호
    • /
    • pp.46-50
    • /
    • 2008
  • The purpose of the present study was to investigate the mariner's information characteristics in ship-ta-ship collision situation using the full mission ship-handling simulator. Risk levels of ship-to-ship collision were manipulated by whether the target ship complies with the naval regulations and by movement patterns of target ship. Dependent variables reflecting mariner's information characteristics in ship-ta-ship collision situation were measured in terms of radar detection reaction time, free recall performance of past navigation situation, and subjective ratings for the task difficulty. The results showed that, in general, the mariners appeared to be deteriorated in their radar detection reaction time and free recall performance as the risk of ship-ta-ship collision increased. Also, the mariners tended to rate required tasks more difficult in the high risk ship-ta-ship collision situation.

조선시대 해선과 강선의 선형특성 (A Study on the Characteristics of the Sea Ship and the River Ship′s Hull Form in the Chosun Period of Korea)

  • 최병문
    • 대한조선학회논문집
    • /
    • 제41권6호
    • /
    • pp.102-113
    • /
    • 2004
  • A name of 'Sea Ship' and 'River Ship' had been used based on the comprehension for the difference of ship's hull form in Chosun period. We can find a number of literature describing the situation which transferred the cargo from Sea Ship to River Ship because Sea Ship could not go upstream in the river of which the current is fast and the water depth is low. The reason why Sea Ship could not go upstream was that the bottom of Sea Ship was narrow, it means the non-flat bottom. Generally Sea Ship had short length, wide breadth, so L/B of 2.2∼3.0, and high draft and depth. River Ship has long length, narrow breadth, so L/B of 5.0∼6.3, and low draft and the flat bottom in order to adapt to the low water depth of the river.

Numerical simulation for a passing ship and a moored barge alongside quay

  • Nam, B.W.;Park, J.Y.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권5호
    • /
    • pp.566-582
    • /
    • 2018
  • A moored barge alongside quay can be influenced by a nearby passing ship and its ship-generated waves. In this study, a time-domain numerical method based on a three-dimensional potential flow solver is developed to investigate the passing ship problem with a moored barge alongside quay. Potential flows around the passing ship and the moored barge alongside a quay is directly solved by using a classical finite element method. Total computational meshes including a passing ship, a moored barge and a quay is updated at each step with an efficient re-mesh algorithm. To validate the developed numerical method, a conventional ship wave problem and a passing ship problem on the open sea has been solved and the solutions are compared with the existing data. Then, a series of numerical computations were carried out to investigate the passing ship effect on a moored barge alongside quay. The characteristics of the passing ship effects are studied with varying the simulation parameters such as passing ship speed, separation distance, wall distances and waves. Focus is made on hydrodynamic forces due to the passing ship effect and its ship waves.

선박의 크기를 고려한 두 선박의 간섭력에 관한 시뮬레이션 (Simulation of Interaction Forces between Two Ships Considering Ship's Dimension)

  • 이상도
    • 한국시뮬레이션학회논문지
    • /
    • 제26권3호
    • /
    • pp.47-54
    • /
    • 2017
  • 본 연구에서는 선박조종시뮬레이터를 이용하여 선박의 크기에 따른 두 선박의 간섭력의 운동특성을 분석하였다. 파나막스급 컨테이너선이 자선보다 크기가 작은 계류선을 근접통항하는 경우에 계류선에서 간섭력의 피크점과 운동패턴의 변화가 뚜렷하게 나타났다. 이땐 선박의 정횡 상태 전후에서 전후력과 회두모멘트가 반대방향으로 바뀌므로 계류선의 움직임에 각별한 주의가 요구된다. 반대로 파나막스급 컨테이너선이 자선보다 큰 계류선을 통과하는 경우에는 근접상황이 발생하는 초기에 통과선에서 간섭력의 피크점이 나타났고, 통과선에는 정횡 이후 약 1L(통과선의 전장)의 구간동안 지속적으로 흡인력이 발생했다. 또한, 통과선과 계류선의 선체간의 수평거리가 2B(통과선의 폭)이하로 줄어들면, 통과선의 초기에 발생하는 간섭력이 급격히 증대된다.

주변 유체를 고려한 선박 충돌해석 기법 연구 (Ship Collision Analysis Technique considering Surrounding Water)

  • 이상갑;이정대
    • 대한조선학회논문집
    • /
    • 제44권2호
    • /
    • pp.166-173
    • /
    • 2007
  • Collision analysis problems between ship to ship can be generally classified into the external mechanics(outer dynamics) and internal mechanics(inner dynamics). The former can be also dealt with the concept of fluid-structure interaction and the use of rigid body dynamic program, depending on the ways handling the hydrodynamic pressure due to surrounding water. In this study, full scale ship collision simulation was carried out, such as a DWT 75,000 ton striking ship collided at right angle to the middle of a DWT 150,000 struck ship with 10 knots velocity, coupling MCOL, a rigid body mechanics program for modeling the dynamics of ships, to hydrocode LS-DYNA. It could be confirmed that more suitable damage estimation would be performed in the case of the collision simulations with consideration of surrounding water through the comparison with the collision simulation results of fixed struck ships without it. Through this study, the opportunity could be obtained to establish a more effective ship collision simulation technique between ship to ship.

Experimental Study on Force and Yaw Moment Acting on Ship in Regular Wave with Various Wave Direction

  • Nguyen, Van-Minh;Yoon, Hyeon-Kyu
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2017년도 추계학술대회
    • /
    • pp.19-21
    • /
    • 2017
  • Ship maneuvering performance is usually estimated in calm water conditions which provide valuable information about the ship maneuvering characteristics at the early design stage. However, the course-keeping ability and the maneuvering performance of a ship can be significantly affected by the presence of waves when ship maneuvers in real sea condition. Therefore, it is necessary to understand the maneuvering behavior of a ship in waves in the viewpoint of ship safety in the design stage. In this study, the force and yaw moment acting on a moving ship in regular waves with different wave length and wave direction will be performed in the square wave tank in Changwon National University. The results of this study can be used to help a person to design a ship hull with the best ship maneuverability in waves and disseminate knowledge on predicting ship maneuvering in regular waves in various wave directions.

  • PDF

6 자유도 모델에 기반한 운항중인 함정의 3차원 RCS 측정 및 분석 기법 (Measurement and Analysis for 3-D RCS of Maritime Ship based on 6-DOF Model)

  • 곽상열;정회인
    • 한국군사과학기술학회지
    • /
    • 제21권4호
    • /
    • pp.429-436
    • /
    • 2018
  • The RCS value of maritime ship is indicator of ship's stealth performance and it should be particularly measured for navy ship to ensure survivability on the battlefield. In the design phase of the navy ship, a RCS prediction should be performed to reduce RCS value and achieve ROC(Required Operational Capability) of the ship through configuration control. In operational phase, the RCS value of the ship should be measured for verifying the designed value and obtaining tactical data to take action against enemy missile. During the measurement of RCS for the ship, ship motion can be affected by roll and pitch in accordance with sea state, which should be analyzed into threat elevation from view point of enemy missile. In this paper, we propose a method to measure and analyze RCS of ship in 3-dimensions using a ship motion measuring instrument and a fixed RCS measurement system. In order to verify the proposed method, we conducted a marine experiment using a test ship in sea environment and compared the measurement data with RCS prediction value which is carried by prediction SW($CornerStone^{TM}$) using CAD model of the ship.

수치 모형선에 의한 제한수역에서의 조종성능 측정 (Measurement of Maneuverability in the Restricted Area by Numerical Model Ship)

  • 박병수;김종화;김척수
    • 해양환경안전학회지
    • /
    • 제15권4호
    • /
    • pp.363-367
    • /
    • 2009
  • 제한수역에서는 Bank cushion과 Squat의 작용으로 인하여 선체의 운동특성이 변한다. 실선을 통한 제한수역에서의 조종성능의 측정은 선박의 안전 때문에 어려운 실정이다. 본 연구에서 제한수역에서의 측벽효과와 Squat에 관한 정보를 얻기 위해 수치모델을 이용하여 선박의 운동을 모사하였다. 선박과 안벽의 거리가 좁을수록 선수방위는 많이 변하였다. 선수방위의 최대 변화치는 선폭에 대한 이안거리의 비(D/B)=0.2에서 $22.37^{\circ}$를 나타내었다. Squat는 속력이 빠를수록 흘수가 작을수록 커졌다. Squat의 최대치는 흘수에 대한 수심(H/d)=1.25, 속력 8knot일 때 0.29m였다. 선박의 안전운항을 위하여 제한수역에서는 감속이 가장 중요한 요소인 것으로 나타났다.

  • PDF

Automated Ship Reporting System in the Context of e-navigation

  • An, Kwang
    • 해양환경안전학회지
    • /
    • 제28권3호
    • /
    • pp.423-429
    • /
    • 2022
  • Ship reporting systems are used to exchange information between ship and shore. To realize the digital ship reporting concept, the International Maritime Organization (IMO) recently developed revised guidelines and descriptions of Maritime Service for ship reporting systems in the context of e-navigation. To improve the existing ship reporting system, each Administration should follow the IMO guidelines for ship reporting system. The purpose of this paper is to identify follow-up measures to be taken by the Korean Government as a member State according to the recently developed IMO guidelines in the context of e-navigation, and to present the considerations for the implementation of follow-up measures in Korea. In this study, a ship reporting system in Korea was investigated to identify the considerations for the digital ship reporting system. Consequently, a digital reporting system and digital traffic clearance were proposed and considerations for ship reporting system are presented. This paper is expected to be helpful for the safe operation of ships by presenting the considerations necessary for the implementation of an automated and standardized ship reporting system.

선박 운항 시뮬레이터에서 해양파와 연동된 선박 및 부표 운동의 실시간 가시화 (Real-time Visualization of Ship and Buoy Motions Coupled with Ocean Waves in a Ship Handling Simulator)

  • 여동진;차무현;문두환
    • 한국CDE학회논문집
    • /
    • 제16권3호
    • /
    • pp.227-235
    • /
    • 2011
  • Ship handling simulator should have capabilities of calculating ship motions (heave, pitch, and roll) at given sea state and displaying the calculated motions through a real-time 3D visualization system. Motion solver of a ship handling simulator generally calculates those motions in addition to position for an own ship, a main simulation target, but provides only position information for traffic ships. Therefore, it is required to simulate real-time traffic ship and buoy motions coupled with ocean waves in a ship handling simulator for the realistic visualization. In the paper, the authors propose a simple dynamics model by which ship and buoy motions are calculated with the input data of wave height and discuss a method for the implementation of a ship and buoy motions calculation module.