• Title/Summary/Keyword: Ship speed

Search Result 1,278, Processing Time 0.025 seconds

A Study of Hydrodynamic Forces Acting on a Ship Hull Under Lateral Low Speed Motion (저속 횡 이동하는 선박의 선체에 작용하는 유체력에 관한 연구)

  • 이윤석;김순갑
    • Journal of the Korean Institute of Navigation
    • /
    • v.23 no.2
    • /
    • pp.29-42
    • /
    • 1999
  • An accurate method of estimating ship maneuverability needs to be developed to evaluate precisely and improve the maneuverability of ships according to the water depth. In order to estimate maneuverability by a mathematical model. The hydrodynamic forces acting on a ship hull and the flow field around the ship in maneuvering motion need to be estimated. The ship speed new the berth is very low and the fluid flow around a ship hull is unsteady. So, the transient fluid motion should be considered to estimate the drag force acting on the ship hull. In the low speed and short time lateral motion, the vorticity is created by the body and grow up in the acceleration stage and the velocity induced by the vorticity affect to the body in deceleration stage. For this kind of problem, CFD is considered as a goof tool to understand the phenomena. In this paper, the 2D CFD code is used for basic consideration of the phenomena to solve the flow in the cross section of the ship considering the ship is slender and the water depth is large enough. The flow fields Added and hydrodynamic forces for the some prescribed motions are computed and compared with the preliminary experiment results. The comparison of the force with measurement is shown a fairly good agreement in tendency. The 3D Potential Calculation based on the Hess & Smith Theory is employed to predict the surge, sway added mass and yaw added moment of inertia of hydrodynamic coefficients for M/V ESSO OSAKA according to the water depth. The results are also compared with experimental data. Finally, the sway added mass of hydrodynamic coefficients for T/S HANNARA is suggested in each water depth.

  • PDF

A Study on Bow Motions of High Speed Vessel in Regular Head Waves (고속선형의 선수운동에 관한 연구)

  • 김순갑
    • Journal of the Korean Institute of Navigation
    • /
    • v.1 no.1
    • /
    • pp.45-62
    • /
    • 1977
  • The advanced researches of the ship's motion in the seaway can predict the heaving, pitching and slamming of ship's motion. The researches as of today are that of displacement type such as a small typical fishing boat and U, UV and V bow ship forms under low speed. In recent day, the study of behaviours of high speed planning boat in the regular waves has been carried out by Bessho [5]. The calculation about behaviours of a high speed vessel in the longitudinal regular waves is calculated by Ordinary Strip Method in this paper. The data of the results were discussed and compared with Bessho's results. The conclusions deduced from this study are as follow, (1) The acceleration of motion calculated by the O.S.M. is similar with Bessho's data for the Fn 0.5 (2) The amplitudes of the behaviours of motions take peak at 1.0<λ/L<1.4.

  • PDF

A Study on Bow Motions of High Speed Vessel in Regular Head Waves (고속선형의 선수운동에 관한 연구)

  • 김순갑
    • Journal of the Korean Institute of Navigation
    • /
    • v.3 no.2
    • /
    • pp.1-19
    • /
    • 1979
  • The advanced researches of the ship's motion in the seaway can predict the heaving, pitching and slamming of ship's motion. The researches as of today are that of displacement type such as a small typical fishing boat and U, UV and V bow ship forms under low speed. In recent day, the study of behaviours of high speed planning boat in the regular waves has been carried out by Bessho [5]. The calculation about behaviours of a high speed vessel in the longitudinal regular waves is calculated by Ordinary Strip Method in this paper. The data of the results were discussed and compared with Bessho's results. The conclusions deduced from this study are as follow, (1) The acceleration of motion calculated by the O.S.M. is similar with Bessho's data for the Fn 0.5 (2) The amplitudes of the behaviours of motions take peak at 1.0<λ/L<1.4.

  • PDF

A Study on the Speed and Torque Control of Propulsion Motor for Electric Propulsion Ship by Direct Torque Control (직접토크제어에 의한 전기추진선박의 추진전동기 속도 및 토크제어에 관한 연구)

  • Kim, Jong-Su;Oh, Sae-Gin;Kim, Seung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.946-951
    • /
    • 2009
  • An induction motor based on DTC(Direct Torque Control) is being increasingly used in various industrial applications. DTC offers faster torque response and better speed control with lesser hardware and processing costs in compared with other controlled drives. This study was to evaluate performance of DTC for induction motor of electric propulsion ship. The simulation results indicated good speed and torque response from the low to middle speed range. Also, DTC has advantages such as the independency on motor parameter.

A Study on the Resistance Test Method for Planning Hull Model using the High Speed Towing Carriage (무인고속전차를 이용한 활주선 모형의 저항시험 기법 연구)

  • Lee, Young-Gill;Ha, Yoon-Jin;Jeong, Kwang-Leol;Chae, Soon-Jae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.5
    • /
    • pp.349-355
    • /
    • 2014
  • The resistance test of a high speed craft such as planing ship is performed with a high speed towing carriage instead of ordinary towing carriage because of the speed limitation. In the resistance test using high speed towing carriage, the model ship is fixed to the carriage to restrain the running attitude for enough measuring time. Such method is called fixed model test method. In the fixed model test method, to get the appropriate running attitude, the model test is iteratively repeated until the trim moment and lift force are close to zero. In this research, trim free model test method is investigated to reduce the number of iteration. And, the limitation of towing speed range in the trim free model test method is investigated.

Estimation of a 9.77 G/T Small Fishing Vessel's Operating Performance Depending on Forward Speed Based on 3-DoF Captive Model Tests (9.77톤급 소형어선의 3자유도 구속모형시험을 통한 선속 별 운항성능 추정)

  • Dong-Jin Kim;Haeseong Ahn;Kyunghee Cho;Dong Jin Yeo
    • Journal of Navigation and Port Research
    • /
    • v.47 no.6
    • /
    • pp.305-314
    • /
    • 2023
  • In this study, a mathematical model of a 9.77 G/T small fishing vessel was established based on captive model tests. The powering and manoeuvring performances of the vessel in the harbor and coastal sea were focused on, so captive model tests were conducted up to the full-scale speed of 8 knots. Propeller open water, resistance, and self-propulsion tests of a 1/3.5-scaled model ship were performed in a towing tank, and the full-scale powering performance was predicted. Hydrodynamic coefficients in the mathematical model were obtained by rudder open water, horizontal planar motion mechanism tests of the same model ship. In particular, in static drift and pure yaw tests which were conducted at a speed of 2 to 8 knots, the linear hydrodynamic coefficients varied with the ship speed. The effect of the ship speed on the linear coefficients was considered in the mathematical model, and manoeuvring motions, such as turning circles and zig-zags, were simulated with various approach speeds and analyzed.

Establishment of Navigational Risk Assessment Model Combining Dynamic Ship Domain and Collision Judgement Model (선박동적영역과 충돌위험평가식을 결합한 항해위험성평가모델 전개)

  • Kim, Won-Ouk;Kim, Chang-Je
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.1
    • /
    • pp.36-42
    • /
    • 2018
  • This paper considers the Marine Traffic Risk Assessment for fixed and moving targets, which threaten officers during a voyage. The Collision Risk Assessment Formula was calculated based on a dynamic ship domain considering the length, speed and maneuvering capability of a vessel. In particular, the Navigation Risk Assessment Model that is used to quantitatively index the effect of a ship's size, speed, etc. has been reviewed and improved using a hybrid combination of a vessel's dynamic area and the Collision Risk Assessment Formula. Accordingly, a new type of Marine Traffic Risk Assessment Model has been suggested giving consideration to the Speed Length Ratio, which was not sufficiently reflected in the existing Risk Assessment Model. The larger the Speed Length Ratio (dimensionless speed), the higher the CJ value. That is, the CJ value is presented well by the Speed Length Ratio. When the Speed Length Ratio is large, states ranging from [Caution], [Warning], [Dangerous] or [Very Dangerous] are presented from a greater distance than when the Speed Length Ratio is small. The results of this study, can be used for route and port development, including dangerous route avoidance, optimum route planning, breakwater width, bridge span, etc. as well as the development of costal navigation safety charts. This research is also applicable for the selection of optimum ship routing and the prevention of collisions for smart ships such as autonomous vessels.

A Study of the Change of Ship Speed according to the Ice Load Signal during Slow Ramming (저속 충격쇄빙 시 빙하중 신호에 따른 선속 변화 연구)

  • Ahn, Se-Jin;Lee, Tak-Kee
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.627-631
    • /
    • 2019
  • Recently, researchers in Korea and abroad actively have conducted research activities using the ARAON, a Korean icebreaking research vessel. The ARAON regularly conduct research activities in the Arctic and Antarctic waters every year. The icebreaking mode, which can be either continuous breaking or ramming, is determined by the conditions of the ice and the ice-covered waters. When the icebreaker encounters thick sea ice or an ice ridge, ramming is used. At that time, the speed of the ship generally is slower than that of continuous icebreaking. In this study, the ice load signal at the time of repetitive ramming during ARAON's 2012 Antarctic research voyage was analyzed. The time history of the ice load signal and the change in the speed of the ship used in ramming were compared with these values during continuous icebreaking.

The Optimum Operating Condition for Reduction of Fuel Consumption -In the Case of Training Ship Pusan 402- (연료 절감을 위한 최적운전 조건 -신습선 부산 402호의경우-)

  • Kim, Yeong-Sik;Kim, Sam-Kon;Yoon, Suck-Hun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.1
    • /
    • pp.29-33
    • /
    • 1986
  • This paper aims at finding out the optimum operating condition to reduce fuel consumption for the training ship Pusan 402 with controllable pitch propeller. For this purpose, this paper examints the variation of ship speed and fuel consumption in accordance with the change of engine revolution and propeller pitch. The results obtained are as follows: 1. When engine revolution is constant, the ship speed sluggishly increases according to the increase of propeller pitch but fuel consumption extremely increases. The higher revolution the engine is, the more remarkable this tendency is. 2. As the engine revolution becomes lower, the fuel consumption per mile decreases. Howt.er = the fuel consumption under the same engine revolution differs according to the propeller pitch. 3. Specific fuel consumption is uniformed about 180g/ps.h at any case of load. 4. Among the various operating conditions which yield the same ship speed, fuel consumption lowers in the case of lower engine revolution and larger propeller pitch.

  • PDF

A Case Study for Cabin Vibration Improvement of 432 ton class Car-ferry Ship changing Propeller Blade Number (프로펠러의 날개 수 변경에 의한 432톤급 카페리여객선 선실 진동 개선에 대한 사례 연구)

  • Yun, Hyunwoo;Dao, Vougang;Lee, Donchool
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.443-448
    • /
    • 2014
  • Recently, car-ferry passenger ships of navigating the coast area in the inside of our country are on an increasing trend of main engine power and the height of upper structure, which is increased to ship's speed and loading of large vehicles. The most ship with high-speed main engine is happened to excessive vibration by propeller induced excitation force on account of connecting the vibration of hull's girder and the upper structure by decreasing the shear stiffness and natural frequency for increasing the height of passenger deck. In this paper, By exchanging the propeller of alteration the number of blades, it could be keep to ship's speed and it's decreased the vibration of hull part that is located passenger deck on the upper deck, which is identified by countermeasure of protection against vibration to procure the safety ship's navigation through measuring the vibration of hull structure.

  • PDF