• Title/Summary/Keyword: Ship maneuverability

Search Result 125, Processing Time 0.023 seconds

A Development of EPISODE Solar Boat (솔라보트 EPISODE의 개발)

  • Choi, Jung-Kyu;Kim, Hee-Taek;Lee, Sung-Soo;Lee, Kwang-Beom;Kim, Hyoung-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.6
    • /
    • pp.635-646
    • /
    • 2007
  • Human Powered Vessel Festival (HPVF) hosted by the College of Engineering of Chungnam National University, the Society of Naval Architects of Korea and the Korea Ocean Research & Development Institute has been held annually in Daejon since 1999. Solar boat powered by solar energy appeared for the first time in 2006, and it is expected that more new teams will enter this competition in the coming years. In this paper it is described that design procedures and manufacture processes of the solar boat named EPISODE. Firstly, It is aimed to understand compositions of the electric system and their performance properties and to show the design procedures using commercial design packages line WAVIS, CATIA, HCAD etc. Through the trial test, we confirmed ship speed, maneuverability, durability and operation condition of the electric system and found some problems. We plans to make reported problems go away and install hydrofoils for more improved speed performance.

Pressure Measurement of Planing Hull Stern Bottom by Tactile Sensors (접촉식 센서를 이용한 고속 활주선 선미부 압력 계측 시험)

  • Park, Sae Yong;Park, Jong Yeol;Lee, Shin Hyung;Kim, Dong Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.5
    • /
    • pp.431-437
    • /
    • 2018
  • The running attitude of a planing hull is determined by the pressure distribution on the hull bottom, and it significantly affects hydrodynamic performance of the ship, i.e., resistance, maneuverability, and seakeeping ability. Therefore, it is essential to investigate pressure distribution on the hull bottom in order to improve hull design. In the present study, a novel pressure measurement system using tactile sensors was introduced for a planing hull. The test model was a 23 m-class planing hull with a hard chine. The pressure measurement showed that the pressure at the transom was lower than the atmospheric pressure, owing to flow separation at the transom.

Dynamic Analysis of Floating Bodies Considering Multi-body Interaction Effect (다물체 연성효과를 고려한 부유체의 동적거동 안전성 해석)

  • Kim, Young-Bok;Kim, Moo-Hyun;Kim, Yong-Yook
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.6
    • /
    • pp.659-666
    • /
    • 2009
  • Recently, there are several problems in space, contiguity and facility of the existing harbors issued due to the trend of enlarging the container capacity of the large container vessel, the Mobile Harbor has been proposed conceptually as an effective solution for those problems. This concept is a kind of transfer loader of the containers from the large container ship, which is a floating barge with a catamaran type in the underwater part, and so prompt maneuverability and work effectiveness. For the safe mooring of two floating bodies, a container and the mobile harbor, in the near sea apart from the quay, a robot arm mooring facility specially devised would be designed and verified through comparison study under various environmental sea condition in the inner and outer harbor. DP system (Dynamic Positioning System) using the azimuth thruster and a pneumatic fender, etc, will be considered as a next research topic for the mooring security of multi-body floaters.

A Study on Improvement of Criteria for Mooring Safety Assessment in Single Point Mooring

  • Lee, Sang-Won;Kim, Young-Du
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.3
    • /
    • pp.287-297
    • /
    • 2019
  • The recent increase in crude oil trading has led to an increase in the workings of SPM for crude oil carriers. VLCCs generally encounter difficulty entering port due to limitations in terms of sea depth and maneuverability. The SPM is a system that allows mooring to the buoy located in the outer sea for such vessels. However, the buoy is more affected by relatively external forces because of their of shore location. Therefore, the safety assessment of SPM is particularly important as it can lead to large oil pollution disasters in the event of SPM accidents. Despite this, in the implementation of the Marine Traffic Safety Audit Scheme in Korea, there exists no guidance for SPM. In this study, a SPM mooring safety assessment is performed using OPTIMOOR, a numerical analysis program, so as to understand the mooring characteristics of SPM. As a result, it is confirmed that the tension of mooring lines and hull movement in the SPM are greatly affected by the encounter angles with external forces. In addition, it is found that the maximum tension of the mooring line is elevated as the water depth becomes shallower through sensitivity analysis. According to SPM characteristics, which has a large influence on the encounter angle, this study has proposed an amendment to setting criteria in the implementation of the Maritime Traffic Safety Audit Scheme which could improve the reliability and accuracy of mooring safety assessments.

A Study on Decision of Minimum Required Channel Width Considering Ship Types by Fast Time Simulation (배속 시뮬레이션 기반의 선종별 최소 항로 폭에 관한 연구)

  • Kim, Hyun-suk;Lee, Yun-sok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.4
    • /
    • pp.309-316
    • /
    • 2020
  • Waterway design should prioritize appropriate channel width to ensure preferential safe passage for the arrival and departure of vessels. To calculate the minimum channel width required for safe passage a comprehensive review of several factors is required. These factors include vessel maneuverability, determined by vessel size, type and speed; environmental factors such as wind, tide, and wave action; human factors, including personal experience and operator judgment as well as marine traffic and navigation support facilities for decision making. However, the Korean channel width design standard is based only on vessel length, and requires improvement when compared with the standards of PIANC, USA, and Japan. This study aims to estimate the appropriate channel width required for one-way traffic in a straight channel, considering various vessel and environmental factors, using Fast Time Simulation (FTS). When the wind speed is 25 knots, with a current speed of 2 knots and a normal vessel speed of 10 knots FTS shows that a 150K GT Cruise Ship requires a minimum channel width of 0.67-0.91 the vessel length (L), whereas a 120K TEU Container Ship and a 300K DWT VLCC require 0.79-1.17 and 1.02-1.59, respectively. Such results can be used to calculate the minimum channel width required for safe passage as an improved Korean design standard.

Study on Hydrodynamic Forces Acting on a Very Large Container Vessel at Lower Depths in Both Still Water and Waves (정수중 및 파랑중 저수심에서의 초대형 컨테이너선에 작용하는 유체력 특성에 관한 연구)

  • Lee, Sangmin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.6
    • /
    • pp.613-619
    • /
    • 2017
  • Recently, the size of container ships has been progressively increasing, and much attention is required for safe navigation in shallow areas such as coastal waters and ports due to increases in draft. It is necessary to understand the characteristics of ship motion not only in still waters but also with waves. Especially in shallow regions, squat due to the vertical movement of the ship can be an important evaluation factor for the safe navigation, and wave drift force acting in the horizontal direction can have a great influence on the maneuverability of a ship. In this study, a numerical simulation using computational fluid dynamics has been performed for the wave exciting force acting in the vertical direction and the wave drift force acting in the horizontal direction for a very large container vessel sailing in shallow zone. As a result, it was found that total resistance in still waters greatly increased in shallow water. Wave drift force was shown to decrease given longer wavelengths regardless of water depth. It was observed that the wave exciting force in shallow water was considerably larger than at other water depths. As wave height against the central part of the ship lowered, the aft side rose.

A Comparative Study of Sea Trials and Production Processes for Propulsion Type Working Boats with a Tuna Purse Seiner (다랑어 선망어선 탑재용 보조 작업선의 추진기 형태 변화에 대한 제작과정 및 해상시운전 비교 연구)

  • Ha, Seoung-Mu;Jang, Ho-Yun;Seo, Hyoung-Seock;Seo, Kwan-Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.595-602
    • /
    • 2017
  • In Korea, much research and development have occurred to enhance the technological competitiveness of tuna purse seining fisheries. Due to these efforts, fishing efficiency has been improved with the development of radar, sonar and global positioning systems for fish detection and revisions to the hull forms of tuna purse seiners. However, for skiff boats, net boats and speed boats, which are auxiliary working boats mounted on tuna purse seiners, technology has lagged behind relative to the modernization of the main vessel. In this study, the hull of an existing propeller-based net boat with steel wire net to protect tuna was changed to the hull of a water jet propulsion vehicle to reduce resistance and improve maneuverability. As a result, a prototype of a water jet propulsion option was produced according to the aluminum structure strength standards specified by the Ministry of Oceans and Fisheries, and safety was confirmed by performing a drop test. Moreover, through a sea trial test, an existing net boat was shown to have a speed of 12.0knots and a towing force of 2,545 kgf at 2,500 RPM. The prototype had a speed of 26.7 knots and a towing force of 2,011 kgf at 3,200 RPM, which satisfied the towing capacity standards of auxiliary working boats mounted on tuna purse seiners.

A Study on the Effect of Rudder Area with Reference to Changes in Span Distance on Course Stability of a Ship (타의 스팬길이에 따른 면적 변화가 침로안정성에 미치는 영향에 관한 연구)

  • Sohn, K.H.;Lee, G.W.;Kim, H.S.;Kim, Y.S.;Ha, M.K.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.4
    • /
    • pp.1-14
    • /
    • 1996
  • Especially in the case of a full form ship, the stability on course can be considered to become severest among 4 items of criteria in Interim Standards for Ship Maneuverability adopted by IMO in 1993. The purpose of this study is to find some ideas for the improvement of stability on course through changes in rudder area with reference to span distance. In this paper, we established the formula on the relation between the experimental constants relevant to rudder normal force and hydrodynamic derivatives of hull-propeller-rudder system. We carried out various kinds of captive model test relevant to rudder normal force etc., and evaluated hydrodynamic derivatives of hull-propeller-rudder system, and analyzed the stability on course with the parameter of changes in rudder area. Furthermore, we also discussed effects of changes in rudder area on maneuvering performance including stability on course, based on computer simulation. As a result, it is clarified that there is a possibility that stability on course may become bad through an increase of rudder area. The reason for the bad stability on course is that the void space between the upper edge of rudder and the lower part of stern overhang decreases. This space change exerts a great influence on straightening coefficient of incoming flow to rudder in maneuvering motion, which has close relation to stability on course.

  • PDF

An Experimental Study on the Characteristics of Propeller and Rudder in Oblique Towing Conditions (사항상태(斜航狀態)에서 프로펠러와 타(舵)의 특성(特性)에 관한 실험적 연구)

  • S.K. Lee;H.S. Kim;S.J. Kim;M.J. Song;S.H. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.66-72
    • /
    • 1994
  • For the reliable prediction of maneuverability of a ship, lots of captive model tests have been carried out for over 10 years. But the parameters appearing in the mathematical model are so versatile and showing complex characteristics, and it is still hard to establish the useful formulae that we can adopt directly in the design stage. In this paper, the most important parameters in the mathematical model. i.e.($1-\omega_P$) the effective wake fraction at propeller, and $\delta_R(\beta_R)$), the effective rudder inflow angles are investigated by the captive model tests at the circulating water channel. The model is tested at designed speed and at low speed, and the drafts at both full load and ballast load conditions are taken. Propeller thrusts and rudder normal forces are measured at the given drift angle and propeller revolution. These forces are used for the analysis of the effective flow velocity or flow direction, to the propeller or rudder.

  • PDF

Effect of Wind Speed Profile on Wind Loads of a Fishing Boat (풍속 분포곡선이 어선의 풍하중에 미치는 영향에 관한 연구)

  • Lee, Sang-Eui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.922-930
    • /
    • 2020
  • Marine accidents involving fishing boats, caused by a loss of stability, have been increasing over the last decade. One of the main reasons for these accidents is a sudden wind attacks. In this regard, the wind loads acting on the ship hull need to be estimated accurately for safety assessments of the motion and maneuverability of the ship. Therefore, this study aims to develop a computational model for the inlet boundary condition and to numerically estimate the wind load acting on a fishing boat. In particular, wind loads acting on a fishing boat at the wind speed profile boundary condition were compared with the numerical results obtained under uniform wind speed. The wind loads were estimated at intervals of 15° over the range of 0° to 180°, and i.e., a total of 13 cases. Furthermore, a numerical mesh model was developed based on the results of the mesh dependency test. The numerical analysis was performed using the RANS-based commercial solver STAR-CCM+ (ver. 13.06) with the k-ω turbulent model in the steady state. The wind loads for surge, sway, and heave motions were reduced by 39.5 %, 41.6 %, and 46.1 % and roll, pitch, and yaw motions were 48.2 %, 50.6 %, and 36.5 %, respectively, as compared with the values under uniform wind speed. It was confirmed that the developed inlet boundary condition describing the wind speed gradient with respect to height features higher accuracy than the boundary condition of uniform wind speed. The insights obtained in this study can be useful for the development of a numerical computation method for ships.