• Title/Summary/Keyword: Ship infrared signature

Search Result 21, Processing Time 0.023 seconds

A Study on the Management Methods of the Ship Infrared Signature (함정 적외선 신호의 관리방법 연구)

  • Cho, Yong-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.3
    • /
    • pp.182-189
    • /
    • 2013
  • In the development process of new naval ships, it is necessary to make the effort of the signature management and reduction of ship infrared(IR) signature to increase the ship survivability(susceptibility). So far the ship's contrast radiant intensity is used as a ship IR signature design criteria during the naval ship design stages. However, nowaday it is in a state of disorder at the basic design stage because of the lack of any related studies and methods. In this study, the IR signature management methods for improving the signature reduction and ship survivability are suggested by the comparison analysis of the advantages and disadvantages of signature management techniques. And also the criteria for the ship signature management are suggested when considering the infrared signature measuring assets and sea trial environments of the Korean peninsula.

A Comparative Study between Measurement and Prediction Results of a Naval Ship Infrared Signature in the Marine Environment (해상환경에서 함정 적외선 신호 측정 및 예측결과 비교 분석 연구)

  • Kim, Jung-Ho;Yoon, Yoon-Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.4
    • /
    • pp.336-341
    • /
    • 2011
  • Ship infrared signature is the cause of detection and tracking by infrared sensor and anti-ship missile seeker. Recent warships have been applied the infrared stealth technology to reduce own ship infrared signature and tested to validate own ship infrared signature level. This study describes the two issues. Firstly, we describe the infrared measurement concept and infrared signature level establishment method that have been performed. Secondly, we compare and analyze the error components between the infrared measurement and simulation result.

An Effectiveness Analysis of the Infrared Signature Reduction with Sea Water Cooling according to the Meteorological Environment (해양환경에 따른 해수냉각의 적외선 신호 저감 효과도 분석)

  • Jung, Ho-Seok;Cho, Yong-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.6
    • /
    • pp.521-528
    • /
    • 2016
  • The surface of a naval ship emits infrared signature because it is mainly heated by the sun. In order to reduce infrared signature, it has been practiced to cool surface of the naval ship by using sea water. In this study, reduction effect of infrared signature was compared according to the parameters which affect emission of infrared signature in order to increase utility of sea water cooling. The analysis results by searching parameters, which can judge operation of sea water cooling, could be utilized as basic data for operation of the naval ship.

A Study on Effect of the Solar Elevation on the Ship IR Signature (태양고각 변화에 따른 함정 적외선신호에 관한 연구)

  • Kim, Yoon-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.38-45
    • /
    • 2010
  • A study on the infrared signature of a naval ship by the solar elevation was performed using the well known IR signature analysis software, ShipIR/NTCS. The contrast radiant intensity of a ship against the Eastern Sea background from sunrise to noon was investigated. Monthly averaged climate data for both January and July were applied to investigate the seasonal change in the signature. A study on the signature for different ship speeds was also carried out. Simulation results showed that the maximum signature in both wave-bands for a sea-level observer occurred at around 25~35 degrees of solar elevation and was highly dependent on the ship geometry rather than the solar irradiance.

Study on Effectiveness of Ocean Meteorological Variables through Sensitivity Analysis of Ship Infrared Signature (함정 적외선신호 민감도 해석을 통한 기상변수 영향에 관한 연구)

  • Cho, Yong-Jin;Jung, Ho-Seok
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.36-42
    • /
    • 2013
  • According to a study on improving ship survivability, an IR signature represents the contrast radiance intensity between the radiation signature from a ship and the background signature. It was found from applying stealth techniques to the process of ship development that the IR signature is remarkably sensitive and dependent on the environment. In this study, marine climate data for the sea near the Korean Peninsula were collected, and the marine meteorological environment in Korean waters was defined. Based on this data, a study on the sensitivity of the IR signature of target objects was performed using analytical methods. The results of the research indicated that clouds have important effects on the infrared signature, but the velocity of the wind and the humidity have only slight effects on the IR signature. In addition, the air and seawater temperatures had hardly any effect on the IR signature, but it is judged that additional study is needed.

A Study on the Infrared Signature of a Naval Ship under the Marine Climate (함정 표면 적외선 신호에 대한 해양기상 영향분석)

  • Kim, Yoon-Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.3
    • /
    • pp.264-272
    • /
    • 2012
  • A study on the IR(InfraRed) signature of a naval ship has been performed using well known IR signature analysis software, ShipIR/NTCS. Variations of the IR signature radiated from skins of a naval ship have been investigated according to the monthly averaged marine climate conditions. An unclassified destroyer model with and without applying the washdown system was applied to compare the influence on the signature under the background changes. The marine background models were created from the observed data by a buoy of Korea Meterological Administration(KMA). The sensitivity of the ship signature against the climate variables such as air temperature, sea temperature, relative humidity has been studied as well. The seasons which show extreme(max, min) skin signature change by whether the washdown is applied or not. The sensitivities of the air temperature and the sea temperature for a dry-ship reversed by applying the washdown on the ship surfaces.

Feasibility Study on Sampling Ocean Meteorological Data using Stratified Method (층화추출법에 의한 해양기상환경의 표본추출 타당성 연구)

  • Han, Song-I;Cho, Yong-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.254-259
    • /
    • 2014
  • The infrared signature of a ship is largely influenced by the ocean environment of the operating area, which has been known to cause large changes in the signature. As a result, the weather condition has to be clearly set for an analysis of the infrared signatures. It is necessary to analyze meteorological data for all the oceans where the ship is supposed to be operated. This is impossibly costly and time consuming because of the huge size of the data. Therefore, the creation of a standard environmental variable for an infrared signature research is necessary. In this study, we compared and analyzed sampling methods to represent ocean data close to the Korean peninsula. In order to perform this research, we collected ocean meteorological records from KMA (Korea Meteorological Administration), and sampled these in numerous ways considering five variables that are known to affect the infrared signature. Specifically, a simple random sampling method for all the data and 1-D, 2-D, and 3-D stratified sampling methods were compared and analyzed by considering the mean square errors for each method.

A Study on the Sensitivity of IR Signature of a Ship according to the Meteorological Environment of Korean Seas (한반도 해양환경에 따른 적외선 신호 민감도 해석연구)

  • Cho, Yong-Jin;Lew, Jae-Moon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.6 s.144
    • /
    • pp.679-685
    • /
    • 2005
  • Until now, the stealth design to reduce the infrared signature of ship haven't been carried out using the proper design criteria. The study on the maritime meteorological environment in the Korean seas hasn't been accomplished yet, so the design criteria of the maritime meteorological environment was just given by the engineering sense without experience of the Navy and/or of the shipyard. Even in rather good conditions(summer condition), the estimated IR signature of a ship showed larger values and couldn't predict the worst condition during the operation of a ship at sea. In this study, domestic maritime meteorological data were collected and variables affecting the IR signature of a ship had been derived through the sensitivity study of IR signature according to the maritime meteorological environment in Korean seas. The basic study on the criteria of the stealth design of IR signature has been carried out.

A Study on Measuring Procedure and Analysis Technique of Ship Infrared Signature at Sea (해상에서 적외선신호의 계측절차 및 분석기법 연구)

  • Cho, Yong-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.53-58
    • /
    • 2009
  • A scale model test for ship Infra-Red signature measurements at sea is impossible, because it is sensitive to the environment. Since we can't control the meteorological environment of the real sea, it can't be carried out with the desired maritime environments. Therefore, in the sea, we made measurements of the weather, operating conditions of the ship, and ship IR signatures under given conditions, and then analyzed them. Conversely, we compared the results of the test with a prediction for a given scenario condition. This paper describes the test items, procedures, and measuring instruments of the experiments at sea and the results from basic researches for methods of estimation and analysis of the measured data.

An Experimental Study on the Dispersion Characteristics of Seawater Injection Nozzle for Hull Cooling (선체냉각을 위한 해수분사노즐의 산포특성에 관한 실험 연구)

  • Yoon, Seoktae;Jung, Hoseok;Cho, Yongjin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.767-773
    • /
    • 2017
  • Infrared stealth is an important technology for naval ships. This technology helps improve the anti-detection performance and survivability of naval ships. In general, the infrared signature of naval ships are categorized into internal and external heat source. External signature are generated by ship surface heating by solar flux as well as the complicated heat transfer process with the surrounding weather condition. Modern naval ships are equipped with seawater injection nozzles on the outside for nuclear, biological and, chemical, and these nozzles are used to control external signature. Wide nozzle placement intervals and insufficient injection pressure, however, have reduced seawater dispersion area. To address this problem, nozzle installation standards must be established. In this study, an actual-scale experimental system was implemented to provide the evidence for nozzle installation standards in order to reduce the infrared signature of naval ships. In addition, the environmental conditions of the experiment were set up through computational fluid dynamics considering the ocean climate data and naval ship management conditions of South Korea. The dispersion distance was measured using a high-resolution thermography system. The flow rate, pipe pressure, and dispersion distance were analyzed, and the evidence for the installation of seawater injection nozzles and operation performance standards was suggested.