• Title/Summary/Keyword: Ship energy efficiency

Search Result 190, Processing Time 0.024 seconds

Analysis of Energy Efficiency Design Index and Onboard Power Capacity for New Building Ships (신조선의 에너지효율설계지수와 선상 동력용량에 대한 분석)

  • Lee, D.C.;Millar Jr, Melchor M.;Nam, J.G.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.843-851
    • /
    • 2009
  • Much work has already been done to control and regulate the worldwide problems caused by climate change, particularly the issues on greenhouse gas (GHG) emissions. Carbon dioxide ($CO_2$), having the highest form of concentration among GHGs composed around 1.0 billion tons of emission, and comprises about 98% of the total emissions from the shipping industry. Korean trade mainly rely on the sea transportation. Korean ship tonnages that was brought about by shipbuilders all over the country, continues to grow annually due to the prevailing demands on goods or material supplies and depicting only a small part of the global maritime activity. Nowadays, new build ships coming from the Korean Shipbuilders are being optimized by hull, structure and appendages design, The operational capability of the propulsion and auxiliary machineries in its maximum capacity to achieve the highest possible efficiencies for energy and onboard power use to mitigate $CO_2$ emissions are continually being done through the help of research and development. In this paper, the energy efficiency design index and anboard power capacity of Korean new build ships have been analyzed with response to data collected by ship types, and its respective fuel consumption in relation to $CO_2$ emission results. In response to climate change convention outcome proposals, the best way for the new build ships to become energy efficient is by lowering its operational speed thru adopting the state of the art diesel propulsion engines, patronizing the best sailing practice to lower the transportation cost on the different sea trade routes also helps in $CO_2$ mitigation.

Comparative Study between Results of Theoretical Calculation and Model Test for Performance Confirmation of "Crown Duct"

  • Lee, Kwi-Joo;An, Jung-Sun;Kwak, Han-Joung
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.1-5
    • /
    • 2014
  • Chosun University, in cooperation with SPP shipyard, has developed an energy saving device based on a new concept: "Crown Duct." Crown Duct is composed of a semi-duct with short struts inside and outside the duct. Theoretical calculations for two different designs were carried out using the CFD code "Ship Flow." The design selected from these two different forms by the CFD code analysis was tested in a towing tank at SSPA. The results showed about 4% efficiency gain under a full-load condition and about 7% gain under a ballast condition in the towing tank test.

A study on the results of IMO MEPC 62nd session and future discussion points (IMO MEPC 62차 회의 결과 및 향후 연구동향)

  • Kim, Kyong-Min;Nam, Jeong-Gil
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.10a
    • /
    • pp.39-40
    • /
    • 2011
  • The 62nd session of the MARINE Environment Protection Committee was held in London from 11 to 15 July 2011. Mandatory measures to reduce emissions of greenhouse gases (GHGs) from international shipping were adopted at the Committee. The amendment to MARPOL Annex VI includes a new chapter 4 to make mandatory the Energy Efficiency Design Index (EEDI) for new ships and the Ship Energy Efficiency Management Plan (SEEMP) for all ships. This first mandatory measures on energy efficiency will enter into force on 1 January 2013. This amendment to MARPOL Annex VI will significantly influences the vast majority of the international maritime community. This paper mainly discusses the main results of MEPC 62nd session including the recent Emission Control Area.

  • PDF

Energy Saving based on HVACS (HVACS 기반의 에너지 절감 연구)

  • Oh, Jin-Seok;Kim, Min-Wook;Lee, Jong-Hak;Oh, Ji-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.7
    • /
    • pp.925-934
    • /
    • 2020
  • In order to improve the energy efficiency of ships, this study designed an energy saving system (ESS) algorithm suitable for ship operation characteristics, and analyzed energy consumption patterns based on the operation characteristics of ships equipped with specific systems. Therefore, we intend to study techniques that can reduce the cost of operation. To this end, we intend to study to implement an efficient system that can increase energy efficiency that reflects the characteristics of the propulsion system of the ship based on the power generation system. The vessel to be researched is intended to conduct research on HVACS (Heating, Ventilation and Air Conditioning) mounted on LNG carriers, and based on this, it has energy with scalability to be applied to future-based vessels such as electric propulsion ships and autonomous ships. I would like to propose a savings technique.

Detection of Abnormal Ship Operation using a Big Data Platform based on Hadoop and Spark (하둡 및 스파크 기반 빅데이터 플랫폼을 이용한 선박 운항 효율 이상 상태 분석)

  • Lee, Taehyeon;Yu, Eun-seop;Park, Kaemyoung;Yu, Seongsang;Park, Jinpyo;Mun, Duhwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.82-90
    • /
    • 2019
  • To reduce emissions of marine pollutants, regulations are being tightened around the world. In the shipbuilding and shipping industries, various countermeasures are being put forward. As there are limits to applying countermeasures to ships already in operation, however, it is necessary for these vessels to use energy efficiently. The sensors installed on ships typically gather a very large amount of data, and thus a big data platform is needed to manage and analyze the data. In this paper, we build a big data analysis platform based on Hadoop and Spark, and we present a method to detect abnormal ship operation using the platform. We also utilize real ship operation data to discuss the data analysis experiment.

Uncertainty Analysis for Speed and Power Performance in Sea Trial using Monte Carlo Simulation (몬테카를로 시뮬레이션을 이용한 시운전 선속-동력 성능에 대한 불확실성 해석)

  • Seo, Dae-Won;Kim, Min-Su;Kim, Sang-Yeob
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.3
    • /
    • pp.242-250
    • /
    • 2019
  • The speed and power performance of a ship is not only a guarantee issue between the ship owner and the ship-yard, but also is related with the Energy Efficiency Design Index (EEDI) regulation. Recently, International Organization for Standardization (ISO) published the procedure of the measurement and assessment for ship speed and power at sea trial. The results of speed and power performance measured in actual sea condition must inevitably include various uncertainty factors. In this study, the influence for systematic error of shaft power measurement system was examined using the Monte Carlo simulation. It is found that the expanded uncertainty of speed and power performance is approximately ${\pm}1.2%$ at the 95% confidence level(k=2) and most of the uncertainty factor is attributed to shaft torque measurement system.

Numerical Study on Optimization of Bulb Type Twisted Rudder for KCS (KCS용 벌브형 비대칭 타의 최적화에 대한 수치적 성능 연구)

  • Kim, Myoung-Gil;Kim, Moon-Chan;Shin, Yong-Jin;Kang, Jin-Gu
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.419-426
    • /
    • 2018
  • Recently, in an effort to reduce the energy efficiency design index (EEDI), studies on energy saving devices (ESDs) have been conducted. In this study, we designed a post-device suitable for a KRISO container ship (KCS) using computational fluid dynamics (CFD). In order to increase the efficiency of the post-device, a twisted rudder was used, which has a proven performance (showing a 1.34% reduction in DHP compared to the bare hull at 24 knots) in previous research at Pusan National University. In addition, an increase in efficiency was expected by the use of a rudder bulb, including the discontinuous section of the twisted rudder and a divergent propeller cap to prevent the contraction of the wake. The optimization criterion was the case where the delivery power was the least compared with the bare hull. We analyzed the cause of the efficiency increase through an analysis of the self-propulsion factor. The case study for optimization was divided into 4 types (1. clearance of the bulb and cap, 2. shape of the bulb, 3. size of the bulb and cap, and 4. asymmetric bulb). Finally, with a clearance of 50 mm from the ship, a spherical bulb with the cap having an angle of $5^{\circ}$, and an asymmetric rudder bulb with a bulb diameter of 1.2HH/1.4H (horizontal/vertical) showed a 2.05% reduction in DHP compared to the bare hull at 24 knots. We will fabricate a post-device that will be optimized in the future and verify the performance of the post-device through model tests.

Hydrodynamic Characteristics of Two-dimensional Wave-energy Absorbers (이차원(二次元) 부유식(浮游式) 파랑발전기(波浪發電器)의 유체역학적(流體力學的) 특성(特性))

  • Moo-Hyun,Kim;H.S.,Choi
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.20 no.1
    • /
    • pp.47-58
    • /
    • 1983
  • A study is made, in the framework of linear potential theory, to investigate the hydrodynamic characteristics of two-dimensional wave-energy absorbers as like the Salter's duck and an oscillating cam with Lewis-form section, which undergo uncoupled heaving and rolling motions in an incident linear gravity wave in deep water. Wave energy is supposed to be extracted by a linearly damped generator with an spring. Some well-known formulae in ship hydrodynamics such as Haskind-Newman relation and Bessho-Newman relation are utilized in forms of Kochin functions to derived expressions for efficiency, breaking effect and drift force of the absorber. Maximum ideal efficiency of 100% can be arrived at an prescribed tuning frequency. Coupling effect is also examined to assess the detrimental effect of sway on efficiency. From numerical calculations for both types of two-dimensional devices it may be concluded that a wave-energy absorber functions at the same time as a wave breaker and that the drift force acting on the device becomes smaller when it absorbs wave energy than as it oscillates freely. Finally the study is extended to an infinite array system, equivalent to a body in a canal, to show that all incident wave energy can be absorbed regardless of the absorber's size, only if the optimum space and the optimum condition of control are realized.

  • PDF

Assessment of the effect of biofilm on the ship hydrodynamic performance by performance prediction method

  • Farkas, Andrea;Degiuli, Nastia;Martic, Ivana
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.102-114
    • /
    • 2021
  • Biofouling represents an important problem in the shipping industry since it causes the increase in surface roughness. The most of ships in the current world fleet do not have good coating condition which represents an important problem due to strict rules regarding ship energy efficiency. Therefore, the importance of the control and management of the hull and propeller fouling is highlighted by the International Maritime Organization and the maintenance schedule optimization became valuable energy saving measure. For adequate implementation of this measure, the accurate prediction of the effects of biofouling on the hydrodynamic characteristics is required. Although computational fluid dynamics approach, based on the modified wall function approach, has imposed itself as one of the most promising tools for this prediction, it requires significant computational time. However, during the maintenance schedule optimization, it is important to rapidly predict the effect of biofouling on the ship hydrodynamic performance. In this paper, the effect of biofilm on the ship hydrodynamic performance is studied using the proposed performance prediction method for three merchant ships. The applicability of this method in the assessment of the effect of biofilm on the ship hydrodynamic performance is demonstrated by comparison of the obtained results using the proposed performance prediction method and computational fluid dynamics approach. The comparison has shown that the highest relative deviation is lower than 4.2% for all propulsion characteristics, lower than 1.5% for propeller rotation rate and lower than 5.2% for delivered power. Thus, a practical tool for the estimation of the effect of biofouling with lower fouling severity on the ship hydrodynamic performance is developed.