• 제목/요약/키워드: Ship control

검색결과 1,287건 처리시간 0.033초

Study on a New and Effective Fuzzy PID Ship Autopilot

  • Le, Minh-Duc;Nguyen, Lan-Anh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1628-1631
    • /
    • 2005
  • Ship Autopilots are usually designed based on the PD and Pill controllers because of simplicity, reliability and easy to construct. However their performance in various environmental conditions is not as good as desired. This disadvantage can be overcome by adjusting works or constructing adaptive controllers. But those methods are complex and not easy to do. This paper presents a new method for constructing a Ship Autopilot based on the combination of Fuzzy Logic Control (FLC) and Linear Control Theory (Pill control). The new Ship Autopilot has the advantages of both the Pill and FLC control methodologies: easy to construct, and optimal control laws can be established based on ship masters' knowledge. Therefore, the new ship autopilot can be well adapted with parameter variations and strong environment effects. Simulation using MATLAB software for a ship with real parameters shows high effectiveness of the Fuzzy Pill autopilot in course keeping and course changing manoeuvres in comparison with the ordinary Pill ship autopilots.

  • PDF

자율운항시스템 개발을 위한 선박운동제어에 관한 연구 : 실험적 연구 (A study on ship motion control system design for developing autonomous system: Experimental study)

  • 김경현;서진호;김영복
    • 수산해양기술연구
    • /
    • 제55권2호
    • /
    • pp.172-180
    • /
    • 2019
  • In this study, a ship motion control system design method is introduced for autonomous ships. Some related research results and technologies for autonomous ships have already been developed and applied to testing ships. Recently, the Norwegian Maritime Authority and the Coastal Administration have signed an agreement and started to test autonomous ships in the defined area. Considering recent technology trends and background, in this paper, the authors also try to develop autonomous ship control technologies. In the designed control system, an observer is introduced to estimate unmeasurable system states. Based on the servosystem with state estimator, ship motion control experiment is performed to evaluate control performance using a model ship in water basin.

선박 자율 운항을 위한 선박운동제어에 관한 연구 (A study on ship motion control system design for autonomous ship)

  • 김경현;김영복;지상원
    • 수산해양기술연구
    • /
    • 제54권3호
    • /
    • pp.231-238
    • /
    • 2018
  • In this study, a ship motion control system design method is introduced for autonomous ships. Some related research results and technologies for autonomous ships have already been developed and applied to ships. For example, the Norwegian Maritime Authority and the Coastal Administration have signed an agreement that allows to test of autonomous ships in the defined area (port to port). Many countries and industries are pursuing to realize the autonomous vessel in the real world. In this paper, the authors try to develop related technology. As basic research, a ship model of the pilot vessel is developed and physical parameters are identified by experiment and simulations. Using the mathematical ship model, a control system is designed and control performance is evaluated by simulations.

Design of a Sliding Mode Control-Based Trajectory Tracking Controller for Marine Vehicles

  • Xu, Zhi-Zun;Kim, Heon-Hui;Park, Gyei-Kark;Nam, Taek-Kun
    • 한국항해항만학회지
    • /
    • 제42권2호
    • /
    • pp.87-96
    • /
    • 2018
  • A trajectory control system plays an important role in controlling motions of marine vehicle when a series of way points or a path is given. In this paper, a sliding mode control (SMC)-based trajectory tracking controller for marine vehicles is presented. A small-sized unmanned ship is considered as a control object. Both speed and heading angle of a ship should be controlled for tracking control. The common point of related researches was to separate ship's speed and heading angle in control methods. In this research, a new control law from a general sliding mode theory that can be applied to MIMO (multi input multi output) system is derived and both speed and heading angle of a ship can be controlled simultaneously. The propulsion force and rudder force are also applied in modeling stage to achieve accurate simulation. Disturbance induced by wind is also tackled in the dynamics considering robustness of the proposed control scheme. In the simulation, we employed a way-point method to generate ship's trajectory and applied the proposed control scheme to ship's trajectory tracking control. Our results confirmed that the tracking error was converged to zero, thus demonstrating the effectiveness of the proposed method.

Design the Autopilot System of using GA Algorithm

  • Lee, Sang-Min;Choo, Yeon-Gyu;Lim, Young-Do
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.699-703
    • /
    • 2004
  • The autopilot system targets decreasing labor, working environment, service safety security and elevation of service efficiency. Ultimate purpose is minimizing number of crew for guarantee economical efficiency of shipping service. Recently, being achieving research about Course Keeping Control, Track Keeping Control, Roll-Rudder Stabilization, Dynamic ship Positioning and Automatic Mooring Control etc. which compensate nonlinear characteristic using optimizing control technique. And application research is progressing using real ship on actual field. Relation of Rudder angle which adjusted by Steering Machine and ship-heading angle are non-linear. And, Load Condition of ship acts as non-linear element that influence to Parameter of ship. Also, because the speed of a current and direction of waves, velocity and quantity of wind etc. that id disturbance act in non-linear form, become factor who make service of shipping painfully. Therefore, service system of shipping requires robust control algorithm that can overcome nonlinearity. In this paper, Using GA algorithm,design autopilot system of ship that could overcome the non-linear factor of ship and disturbance and examined result through simulation.

  • PDF

자율운항선박을 위한 원격제어관리시스템 (Remote Control Management System for Autonomous Ship)

  • 이광일
    • 한국융합학회논문지
    • /
    • 제9권11호
    • /
    • pp.45-51
    • /
    • 2018
  • 자율운항선박은 제4차 산업혁명을 맞이하여 조선해양분야에서 가장 주목을 받고 있는 기술이다. 특히, 자율운항선박기술은 해상에서의 안전성, 신뢰성, 효율성 및 친환경을 달성할 수 있는 핵심기술로서 간주되고 있다. 자율운항선박의 실현을 위해서는 선박이 자유적으로 운항할 수 있는 기술 뿐 아니라, 육상에서 원격으로 선박을 제어할 수 있는 기술도 중요하다. 본 논문에서는 육상에서 다양한 선박을 원격에서 관제할 수 있는 육상관제시스템에 대해서 다루고 있다. 본 논문에서는 원격관제를 위한 개방형 자율운항 시스템 구조로서 육상과 선박간 원격과제 및 원격 모니터링을 수행하기 위한 표준화된 원격관제 프로토콜과 선박 제어방안을 제안하고 있다. 또한, 본 논문에서는 모의선박을 통한 테스트베드 구축과 원격제어 기능에 대한 테스트를 통해 제안된 시스템의 적합성을 확인하였다.

LMI를 이용한 선박 횡동요 제어에 관한 실험적 연구 (An Experimental Study on the Rolling Motion Control of a Ship Based on LMI Approach)

  • 채규훈;김영복
    • 한국해양공학회지
    • /
    • 제17권2호
    • /
    • pp.60-66
    • /
    • 2003
  • In this paper, an actively controlled anti-rolling system is considered, in order to reduce the rolling motion of a ship. In this control system, a small auxiliary mass is installed on the upper area of the ship, and an actuator is connected between the auxiliary mass and the ship. The actuator reacts the auxiliary mass, applying inertial control forces to the ship to reduce the rolling motion in the desired manner. In this paper, we introduce LMI based H$_{\infty}$ control approach to design the anti-rolling control system for the controlled ship. And the experimental results show that the desirable control performance can be achieved.

An Algorithm for Robust Noninteracting Control of Ship Propulsion System

  • Kim, Young-Bok
    • Journal of Mechanical Science and Technology
    • /
    • 제14권4호
    • /
    • pp.393-400
    • /
    • 2000
  • In this paper, a new algorithm for noninteracting control system design is proposed and applied to ship propulsion system control. For example, if a ship diesel engine is operated by consolidated control with controllable pitch propeller (CPP), the minimum fuel consumption is achieved satisfying the demanded ship speed. For this, it is necessary that the ship is operated on the ideal operating line which satisfies the minimum fuel consumption, and the both pitch angle of CPP and throttle valve angle are controlled simultaneously. In this context of view, this paper gives a controller design method for a ship propulsion system with CPP based on noninteracting control theory. Where, linear matrix inequality (LMI) approach is introduced for the control system design to satisfy the given $H_{\infty}$, constraint in the presence of physical parameter perturbation and disturbance input. To the end, the validity and applicability of this approach are illustrated by the simulation in the all operating ranges.

  • PDF

선박 추진 시스템의 엔진-CPP 통합적 제어에 관한 연구 (A Study on the Engine-CPP Control of a Ship Propulsion System)

  • 김영복
    • 제어로봇시스템학회논문지
    • /
    • 제4권4호
    • /
    • pp.427-432
    • /
    • 1998
  • There are many demands for ship control system and many studies have been proposed. For example, if a ship diesel engine is operated by consolidated control with Controllable Pitch Propeller(CPP), the minimum fuel consumption is achieved, satisfying the demanded ship speed. For this, it is necessary that the ship is operated on the ideal operating line which satisfies the minimum fuel consumption. In this context of view, this paper presents a controller design method for a ship propulsion system with CPP by Linear Matrix Inequality(LMI) which satisfies the given $H_{\infty}$ control performance and robust stability in the presence of physical parameter perturbations. The validity and applicability of this approach are illustrated through a simulation in the all operating ranges.

  • PDF

선체 횡동요 방지 장치 개발을 위한 실험적 연구 (An Experimental Study on the Development of the Anti-Rolling Control System for a Ship)

  • 김영복;변정환;양주호
    • 한국해양공학회지
    • /
    • 제14권4호
    • /
    • pp.43-48
    • /
    • 2000
  • In this paper, an actively controlled anti-rolling system is considered to reduce the rolling motion of the ship. In this control system, a small auxiliary mass is installed on the upper area of the ship, and actuator us connected between the auxiliary mass and a ship. The actuator reacts against the auxiliary mass, applying inertial control forces to the ship to reduce the rolling motion in the desired manner. In this paper, we apply the PID controller to design the anti-rolling control system for the controlled ship. And the experimental result shows that the desirable control performance is achieved.

  • PDF