• Title/Summary/Keyword: Ship construction

Search Result 514, Processing Time 0.025 seconds

A Study on Spatial Scheduling in the P.E. Stage (선행 탑재장에서의 공간일정계획에 관안 연구)

  • Koo Chung-kon;Yoon Duck-Young;Bae Tae-Kyu;Cho Min-Ch
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.61-66
    • /
    • 2004
  • In this paper an effort is made to develop an innovative spatial arrangement concept pertaining to ship building industry. The spatial scheduling is the problem that concentrates on effective planning of available space and arrangements of blocks and in a priority manner. In order to create an effective spatial scheduling. a database providing the priority has to be available to make the erection sequence. Such a system works hand in hand with erection sequence generator program The erection sequence program works on the conventional network analysis method which uses a typical parent-children idea for the calculation of the ENT(possible earliest network start time) and LNT(possible latest network start time). This program works in a cyclic manner taking turns by calculating the ENT in upward trace and LNT on the return trace thereby generating the entire erection sequence diagram for the requisite problem The generated database serves as an input data for spatial scheduling problem. When the system works it takes into consideration the entire system based on heuristic concepts as mentioned. There system uses the spatial aspects such as the available area of the P. E area and plan area of the corresponding blocks and its priority of erection from the erection sequence generator program develops the spatial scheduling arrangement. In this paper using all these concepts an innovative spatial schedule development system developed.

  • PDF

Development of Furan Mold Design and Machining System for Marine Propeller Casting (선박용 프로펠러 후란주형 설계 및 가공 시스템 개발)

  • Park, Jung Whan;Jung, Chang Wook;Kwon, Yong Seop;Kang, Sung Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.121-128
    • /
    • 2016
  • A furan mold design and machining system for marine propeller casting was developed. In general, a large marine propeller is produced by casting in a foundry, where the upper and lower molds are constructed of cement or other materials like furan. Then, the cast workpiece is machined and manually ground. Currently, furan mold construction requires a series of manual tasks. This introduces a fairly large amount of stock allowances, which require a considerable number of man-hours for later machining and grinding, and also increase the work processes. A mold design and off-line robot programming software tool with a six-axis robot hardware system was developed to enhance the shape accuracy and productivity. This system will be applied in a Korean ship building company.

An Experimental Study on the Bending Behavior of F.R.P. Sandwich Structure with 2nd Reinforced Bonding (2차 접착된 Sandwich 구조의 굽힘에 관한 실험연구)

  • Kim, Ik Tai
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.1
    • /
    • pp.47-51
    • /
    • 2016
  • It has made a special study of bending behavior of F.R.P. sandwich beams with bonded 2nd-reinforced plies. Specimen's faces were made of chopped mat 300-450, roving clothes 570, core is urethane foam, resin is 713bp unsaturated polyester for ship construction and the mixture weight ratio of resin versus fiber was 55:45 for bending analysis. The purpose of this paper is to study the exact bending behavior of bonded area's deflection and stiffness depends upon various bonded F.R.P. (2nd reinforced ply) length and thickness on which covered joints and to find the optimum design for the sandwich structures. All results and suggestions are based on experiment and using thick face calculation.

China's Satellite Research and Development to Collect Electronic Signals for Marine Reconnaissance to Surrounding Nations (중국의 주변국 해양감시를 위한 전자신호 수집위성 연구개발)

  • Lee, Yongsik;Aom, Sangho;Lim, Jaesung
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.3
    • /
    • pp.54-62
    • /
    • 2017
  • China has invested for military satellite technology development to construct the space-based surveillance system from existing land-based and aerostat surveillance system since 1960s to react rapidly for deployment of marine force of United States and surrounding nations in west Pacific, south China sea and Indian ocean. China has also launched about 40 the Yaogan military intelligence satellites series for EO, SAR and ELINT fields since 2006 after the required technique with several technical experiment satellites launch and operational test. ELINT satellites transmit data from satellite to earth station in real time with construction space-based network around it. Those data are simultaneously delivered to Anti-Ship Ballistic Missile(ASBM) connected land-based C4ISR network for marine target attack. Therefore China has enhanced surveillance and attack capability to the surrounding marine nations with space-based network around it. In the future, It is considered that China will increase accurate location search, signal processing and analysis ability through a further study on its technology.

A study on the Crashworthiness Design of Bow Structure of Oil Carriers -Collision Behaviour of Simplified Models(1) (유조선 선수부의 내충돌 구조설계에 관한 연구 -이상화 모델의 충돌거동 분석(1))

  • 신영식;박명규
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.120-127
    • /
    • 2001
  • The potential pollution problems resulting from tanker collision necessitate the requirement for an effective structural design and the development of relevant safety regulations. During a few decades, the great effort has been made by the international Maritime Organization and the Administration, etc, to reduce oil spillage from collision accidents. However there is still a need for investigation in the light of structural evaluation method for the experiments and rational analysis, and design development for an operational purpose of ships. This study aims for investigating a complicated structural response of bow structures of simplified models and oil carriers for assessing the energy dissipation and crushing mechanics of the striking vessels through a methodology of the numerical analysis for the various models and its design changes. Through these study an optimal bow construction absorbing great portion of kinetic energy at the least penetration depth prior to reach to the cargo area and an effective location of collision bulkhead are investigated. In order to obtain a rational results in this study, three stages of collision simulation procedures have been performed step by step as follows; 1) 16 simplified ship models are used to investigate the structural response against bow collision with variation of primary and secondary members. Mass and speed are also varied in four conditions. 2) 21 models consisted of 5 sizes of the full scaled oil carriers are used to perform the collision simulation with the various sizes and deadweight delivered in a recent which are complied with SOLAS and MARPOL. 3) 36 models of 100l oil carrier are used to investigate the structural response and its influence to the collision bulkhead against bow collision in variation with location of collision bulkhead, primary members, framing system and colliding conditions, etc. By the first study using simplified models the response of the bow collision is synthetically evaluated for the parameters influencing to the absorbed energy, penetration depth and impact force, etc.

  • PDF

A study on installation location of radar for minimizing blind area in the construction of VTS system of Kangjeong Port (강정항 VTS 시스템 구축시 음영구역 최소화를 위한 레이더의 위치설정에 관한 연구)

  • LEE, Seung-Hi;KIM, Kwang-Il;AHN, Jang-young;LEE, Chang-Heon;CHOI, Chan-Moon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.2
    • /
    • pp.187-195
    • /
    • 2017
  • We have studied the efficient operation of the radar and the appropriateness of the installation location, when constructing the VTS system. As the Civil-Military Complex Harbour (Kangjeong Port) is completed in 2016, we set the control area within 10 nautical miles centering on Kangjeong Port, and found out and removed the operational radar blind area of VTS system to provide safe navigation information for vessels that navigating this area. Assuming that two international cruise ships entering at the same time, we performed the radar simulation and compared the images by considering the three sites of Kangjeong Port, Miaksan and Seoguipo Port. Simulation results for a single radar installed at Kangjung Port indicate that the blind area was largely affected by two large cruise ships and the surrounding islands. The blind area due to Kogunsan was considerably large when installed in Miaksan, but the blind area due to the influences of Beomseom, Moonseom and Seopseom was negligibly large. It seems that additional radar installation is necessary as a complementary solution to solve this blind area. When two radars were installed at Miaksan and Kangjeong Port, the residual blind area due to the Seopseom was $0.25km^2$ at 0.1~0.33 nautical miles in the southeast direction from Seopseom. In addition, the remaining blind area with two cruise ships mutually influenced was $0.18km^2$, which did not occur with a single cruise ship.

Study on Construction of Simulation Model based on Analysis of Container Handling Database - A case of HICCT in Japan - (컨테이너터미널의 하역 데이터베이스 분석에 의한 하역시뮬레이션 모델 구축에 관한 연구 - 일본의 HICCT를 중심으로 -)

  • Kim, Hwa-Young
    • Journal of Navigation and Port Research
    • /
    • v.31 no.8
    • /
    • pp.717-723
    • /
    • 2007
  • In recent years, the transportation sector has been undergoing very rapid and multifarious changes due to the M&A, alliances between shipping companies, introduction of larger container ship as it cost reduction measure and the application of integrated logistics to satisfy the needs of customers. Therefore, container terminal is required adequate terminal facilities, sufficient channel depth, efficient handling and low cost of port fees and dues. The purpose of this paper is for functional assessment of efficient container terminal. Firstly, the container operating process information about yard equipment and chassis is extracted through the analysis of practical daily work report of container terminal. Also, the formulae of skill factor and troubles of operator on transfer crane are defined. Lastly, container handling simulation model which consideration of skill factor and trouble of operator is proposed by Petri network model.

Study on Temperature Distribution for Various Conditions of Moving Heating Source During Line Heating Process (선상가열시 이동열원 조건에 따른 가열 판재의 온도분포에 관한 연구)

  • Choi, Yoon-Hwan;Lee, Yeon-Won;Choi, Kwang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.617-624
    • /
    • 2010
  • Line heating is a manufacture method, which was widely used to machining a curved surface in the ship construction. The qualities using by line heating are very difference compare to the proficiency level of the engineer. So it's mainly depend on the automation equipment instead of the proficiency level engineer. In this study, it would be investigate the temperature distribution of the heating plate, which was used by the automation equipment according to line heating. The main factors are the moving velocity of the heating source, strength and the heating method separately, in temperature distribution while line heating. In this paper, it was investigated the temperature change with the vary of each three variables. The numerical result showed that peak temperature decrease if the moving velocity of the heating source increased. It can also calculate the change quantitatively that the peak temperature and temperature distribution changed linearly with the vary of the heating source.

Study of Specific energy of mechanical destruction of ice for calculation of ice load on ships and offshore structures

  • Tsuprik, V.G.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.718-728
    • /
    • 2013
  • Analysis of scenarios of transportation oil and gas which produced in the Arctic and others cold seas shows that in the near-term there will be a significant increase of tonnage of tankers for oil and gas and number of ships which should be exploited in difficult ice conditions. For the construction of ice-resistant structures (IRS) intended for production of oil and gas and transportation of these products at ice-class vessels, calculating the load from ice to board the ship and on surface of supports of the platforms are the actuality and urgent tasks. These tasks have one basis in both cases: at beginning of the contact occurs fracture of edge of ice, then occurs compressing of rubble shattered of ice, then they extruding from contact area, after this next layer of ice begin to destruct. At calculating the strength of plating and elements construct of vessels, icebreakers and ice-resistant platforms the specific energy of mechanical destruction ice ${\epsilon}_{cr}$ is an important parameter. For the whole period of study of physical and mechanical characteristics of sea ice have been not many experimental studies various researchers to obtain numerical values of this energetic characteristic of the strength of ice by a method called Ball Drop Test. This study shows that the destruction of the ice from dynamic loading in zone of contact occurs in several cycles, and the ice destructed with a minimum numerical values of ${\epsilon}_{cr}$. The author offer this energy characteristic to take as a base value for the calculation of ice load on ships and offshore structures.

Experimental Verification of Unwinding Behavior of Fiber-Optic Cable and Prediction of High-Speed Unwinding (광 케이블 풀림 거동의 실험적 검증 및 고속 풀림 거동 예측)

  • Kim, Kun Woo;Lee, Jae Wook;Kim, Hyung Ryul;Yoo, Wan Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.3
    • /
    • pp.243-250
    • /
    • 2014
  • Fiber-optic cables towed by underwater vehicles have an important role in enhancing the mission capability of a mother ship. In general, fiber optic cables are unwound in water for securing unwinding stability and preventing unwinding-related problems. Therefore, in this study, the numerically simulated result is verified against the experimental result in water, and the cable-unwinding motion is predicted based on the increase in unwinding velocity. The experimental apparatus is composed of a water tank and a winder, and a high-speed camera is used for photographing the cable-unwinding motion. The numerical result defined in the Cartesian coordinate system is solved using a transient-state unwinding equation of motion. The numerical result agrees well with the experimental result, and it can predict cable-unwinding behaviors in according to an increase in the unwinding velocity.