• Title/Summary/Keyword: Ship calculation

Search Result 543, Processing Time 0.022 seconds

Naval ship's susceptibility assessment by the probabilistic density function

  • Kim, Kwang Sik;Hwang, Se Yun;Lee, Jang Hyun
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.4
    • /
    • pp.266-271
    • /
    • 2014
  • The survivability of the naval ship is the capability of a warship to avoid or withstand a hostile environment. The survivability of the naval ship assessed by three categories (susceptibility, vulnerability and recoverability). The magnitude of susceptibility of a warship encountering with threat is dependent upon the attributes of detection equipment and weapon system. In this paper, as a part of a naval ship's survivability analysis, an assessment process model for the ship's susceptibility analysis technique is developed. Naval ship's survivability emphasizing the susceptibility is assessed by the probability of detection, and the probability of hit. Considering the radar cross section (RCS), the assessment procedure for the susceptibility is described. It's emphasizing the simplified calculation model based on the probability density function for probability of hit. Assuming the probability of hit given a both single-hit and multiple-hit, the susceptibility is accessed for a RCS and the hit probability for a rectangular target is applied for a given threat.

Study on Prediction and Control of Wind-Induced Heel Motion of Cruise Ship (바람 하중에 의한 크루즈선의 횡경사 예측 및 제어에 관한 연구)

  • Kim, Jae-Han;Kim, Yonghwan;Kim, Yong-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.4
    • /
    • pp.206-216
    • /
    • 2013
  • The present study considers the prediction of wind-induced heel of cruise ship and its stabilization. Wind load in ocean exerts on the surface of superstructure of cruise ship, which causes the heel moment on the ship. The calculation of wind load starts from choosing wind speed profile, so that the logarithmic wind profile model is applied in this study. Heel moment by wind load is calculated by adopting approximate formulation and applied to the ship motion analysis in time domain. Motion stabilizers, such as stabilizing fin and U-tube tank, are considered to reduce the heel effect as well as excessive roll motion. From this study, it is expected that the present method can be applied to the prediction and stabilization of the heel motion of cruise ships.

A Study on the Assessment for the Auto-pilot System of a Ship in Waves (파랑중 선박의 자동조타 시스템의 평가에 관한 연구)

  • S.K. Lee;K.W. Lee;T.K. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.1
    • /
    • pp.40-45
    • /
    • 1998
  • There are two kinds of methods in the analysis of ship motion in irregular waves. The one is the spectral method in which the ship motion is assessed with spectral of irregular waves times R.A.O. of a ship. The other is, so called, time domain analysis, in which the irregular waves are used directly in the equation of ship motion to calculate the responses. In this paper, both methods are applied for the calculation of course keeping motion of a ship in irregular waves with auto-pilot control. And, the differences and useful1ness of the two methods in the assessment of auto-pilot system are compared.

  • PDF

Automatic Control for Ship Collision Avoidance Support-II (선박충돌회피지원을 위한 자동제어-II)

  • Im, Nam-Kyun
    • Journal of Navigation and Port Research
    • /
    • v.28 no.1
    • /
    • pp.9-16
    • /
    • 2004
  • The purpose of this study is to examine the algorithm of ship collision avoidance system and to improve its performance. The study on the algorithm of ship collision avoidance system have been carried out by many researchers. We can divide the study according to the adopted theory into two category such as 'collision risk calculation method' and 'risk area method'. It is not so difficult to find heir merit and demerit in the respective method. This study suggested newly modified model, which can overcome a limit in the two method. The suggested model is based on collision risk calculation method and suggests how to solve the threshold value problem, that is, one of the unsolved issues in collision risk calculation method. To solve that problem this study proposed new system under which the users can select appropriate threshold value according to environments such as traffic situations and weathers conditions. Simulation results of new model is schematized using 'risk area method'to examine the relationships between the two method. In addition, in case of 'collision risk method', when TCPA and DCPA are used to determine collision risk, a problem happens, that is, two ships become too close in their stem area, therefore, partial function of 'risk area method'is adopted to solve the problem in suggested model.

A Study of Wire Sweep, Pre-conditioning and Paddle Shift during Encapsulation of Semiconductor Chips (반도체 칩 캡슐화 성형 공정에 있어서 와이어 스윕 및 패들 변형에 관한 연구)

  • Han, Se-Jin;Heo, Yong-Jeong;Lee, Seong-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.102-110
    • /
    • 2001
  • In this paper, methods to analyze wire sweep and paddle shift during the semiconductor ship-encapsulation process have been studied. The analysis of wire sweep includes flow-field analysis in a complicated geometry, drag-force calculation for given flow of fluid, and wire-deformation calculation for given loads. The paddle-shift analysis is used to analyze the deformation of the paddle due to the pressure difference in two cavities. the analysis is done using either analytical solutions or numerical simulation. The analytical solution is used for rough but fast calculation of wire sweep. The numerical solution is used for more accurate calculation of wire-sweep. The numerical results of wire sweep show good agreements with the experimental ones.

  • PDF

The Finite Depth Effect on the Ship Motion in Longitudinal Regular Head Waves (종규칙파중(縱規則波中)에서 수심(水深)이 선체운동(船體運動)에 미치는 영향(影響))

  • J.H.,Hwang;S.J.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.12 no.2
    • /
    • pp.59-66
    • /
    • 1975
  • Recently, as the dimensions of energy carriers increase, especially in draft, a reliable prediction of the ship motions at finite depths of water becomes necessary. The purpose of this paper is to probe the effect of finite water depth on the hydrodynamic forces and ship motions, particularly heave and pitch, in longitudinal regular head waves, by comparing the experimental value of Freakes and Keay with the author's theoretical value obtained by applying the modified strip theory to the Mariner class ship. It is confirmed that generally the hydrodynamic coefficients in the equations of motion increase with decreasing water depth, and the wave exciting forces and moments decrease with decreasing water depth. Amplitudes of heave and pitch in longitudinal regular head waves decrease as the water depth in the range where the length of the incident wave is comparatively long. The effects of Froude Number on the hydrodynamic coefficients increase with decreasing water depth and is more noticeable in the case of heave than pitch. In heave, generally the discrepancy between the experimental value and the theoretical value is relatively small in the case of $F_n=O$, but it is very large in the case of $F_n=0.2$. It is considered that the trend stems from the ignorance of the three dimensional effect and the other effects due to shallowness of water on the hydrodynamic coefficients in the theoretical calculation. An extension of methods for calculating the two dimensional hydrodynamic forces to included the effect of forward speed should be recommended. It is required that more experimental works in finite water depths will be carried out for correlation studies between the theoretical calculation, according tp modified strip theory, and model experiments.

  • PDF

A Study on the Investigation and Analysis of Collisions at Sea (선박충돌사고의 원인조사 및 분석방법에 관한 연구)

  • 김상수;정재용;하원재;송두현;박진수
    • Journal of the Korean Institute of Navigation
    • /
    • v.24 no.1
    • /
    • pp.13-22
    • /
    • 2000
  • The collisions at sea among marine casualties are not reduced as the tonnage and speed of ship's increase as well as the traffic quantity increase at sea, in spite of the improvement of nautical equipment, enforcement of crew's education and training as well as improvement of quality standard according to the implementation of ISM code. The measures to prevent the collisions at sea are simple, and are composed of six stage.: The first stage is that the officer on duty detect the target from his eye or radar information. The second stage is determining the type and kind of target-ship. The third stage is target tracking; calculation of target speed, course, CPA and TCPA from radar information or visual check. The fourth stage is determination of vessel in danger after calculation of third stage. The fifth stage is the judgement of situation if own ship is stand-on or give way vessel according to the 1972 COLREG. The last stage is to carry out proper action according to 1972 COLREG, under the circumstances. But by the case, the situations are so different under the different external conditions; for example, natural/navigational conditions, crew's human factors, ship's particular, rule or regulation, management system on board, the condition of watch keeping. Therefore the reasons and casualties are so complicated. This study aims to investigate the collision casualty at sea which needs to clarity all these causal factors of afore-mentioned, and to analyze the causes of problems so as to utilize them to establish the measures of preventing marine accidents. This study, described the concepts of causal factors into three groups; environmental factor, and company/on board management system and navigator's act. Also described how to investigate and analyzes the casual factors. Even though it was described in this paper how to detect the causal factors and reasons of collisions, and how to analyze the inter-relation of each causal factors, it is necessary to do further study how to analyze between the liability of concerned parties and the casual factors involved.

  • PDF

On the Removal of Irregular Frequencies in the Prediction of Ship Motion in Waves (파랑중에서 전진동요하는 선박의 특이파수 억제에 관한 연구)

  • H.Y. Lee;D.J. Yum
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.73-81
    • /
    • 1994
  • The source and source/dipole distribution methods using 3-dimensional panel method have been widely used for ship motion analysis. When these methods are used, large errors in the predicted hydrodynamic coefficients are introduced around the irregular frequencies caused by the resonance of imaginary internal flow. Therefore, the irregular frequencies need to be removed for an accurate prediction of ship motion. This paper adopts 3-dimensional translating and oscillating Green function derived by Wu. The adaptive integration method, stretching transform and stationary phase method are used for the calculation of the calculation of Green function and the integral equation is derived by distributing the Green function n ship surface and inner free-surface. The condition of zero normal velocity, that is, wall condition on inner free-surface has been successfully used for the removal of irregular frequencies in oscillating problems. The calculations are carried out for series 60($C_B=0.7$) vessel and the results are compared with those of other theoretical analyses and experiment.

  • PDF

Assessment of Safe Navigation Including the Effect of Ship-Ship Interaction in Restricted Waterways

  • Lee, Chun-Ki
    • Journal of Navigation and Port Research
    • /
    • v.27 no.3
    • /
    • pp.247-252
    • /
    • 2003
  • This paper is mainly concerned with the assessment of safe navigation between ships moving each other in restricted waterways. The numerical simulation of manoeuvring motion was conducted parametrically to propose an appropriate safe speed and distance, which is required to avoid sea accident under the different conditions, such as ship-velocity ratios, ship-length ratios, separation and stagger between ships. As for the calculation parameters, the ratios of velocity difference between two ships were considered as 0.6, 1.2, 1.5 and the ones of ship-length difference were regarded were regarded as 0.5, 1.0, 1.18. From the inspection of this investigation, it indicates the following result. Firstly, the separation between ships is more needed for the small vessel, compared to the large vessel. Secondly, the lateral distance between ships is necessarily required for the velocity ration of 1.2, compared to the cases of 0.6 and 1.5. The manoeuvring characteristics based on this investigation will be very useful for keeping the safety of navigation from the practical point of ships design and traffic control in confined water.

Probabilistic Prediction of Stability of Ship by Risk Based Approach

  • Long, Zhan-Jun;Lee, Seung-Keon;Lee, Sung-Jong;Jeong, Jae-Hun
    • Journal of Navigation and Port Research
    • /
    • v.33 no.4
    • /
    • pp.255-261
    • /
    • 2009
  • Prediction of the stability for ships is very complex in reality. In this paper, risk based approach is applied to predict the probability of capsize for a certified ship, which is effected by the forces of sea especially the wave loading Safety assessment and risk analysis process are also applied for the probabilistic prediction of stability for ships. The probability of shipsencountering different waves at sea is calculated by the existed statistics data and risk based models. Finally, ship capsizing probability is calculated according to single degree of freedom(SDF) rolling differential equation and basin erosion theory of nonlinear dynamics. Calculation results show that the survival probabilities of ship excited by the forces of the seas, especially in the beam seas status, can be predicted by the risk based method.