• Title/Summary/Keyword: Ship Plate

Search Result 448, Processing Time 0.026 seconds

Prediction and Response of Ship`s Hull Girder for Slamming - On The Impact Force of Foreward Flat Bottom Plate - (Slamming에 관한 선체의 응답과 예측 - 전부선저의 충격적 중심으로 -)

  • Hong, Bong-Ki;Kim, Sa-Soo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.2
    • /
    • pp.96-104
    • /
    • 1984
  • This paper is on the prediction and response of the ship hull girder due to slamming of foreward flat bottom plate. The response with respect to foreward flat bottom is divided two kinds by estimating method. One is the estimation of impact forces by slamming, Another is the response of hull girder due to impact forces, that is, displacement, velocity, acceleration, etc. must calculate the values for considered ship hull girder. In this paper, therefore, was estimated only impact forces along ship ordinate of foreward. The analysis of data for estimation followed mainly papers of Ochi. These estimated data shall contribute for ship gull construction for basic optimum design. In particular, the estimated impact forces shall be given for the response of ship gull girder on the foreward flat bottom plate with characteristics of external forces.

  • PDF

Ultimate Strength varying the Yield Stress of a Ship's Plate (선체판의 항복응력 변화에 따른 최종강도거동에 관한 연구)

  • Ko Jae-Yong;Lee Jun-Kyo;Park Joo-Shin
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.05a
    • /
    • pp.179-183
    • /
    • 2005
  • The High-tensile steel has been recognized as a promising concept for structural design of light weight transportation systems such as aircraft high speed trains and fast ships. Using the high-tensile steel has been widely used in ship structures, and this enables to reduce the plate thickness. Using the high-tensile steel effectively for a ship hull, the plate thickness becomes thin so that plate buckling may take place. Therefore, precise assessment of the behavior of plate above primary buckling load is important. In this study, examined closely secondary buckling behavior after initial buckling of thin plate structure which operated compressive load according to the various kinds of yield stress with simply supported boundary condition. Analysis method is F.E.M by commercial program(ANSYS V7.1) and complicated nonlinear behaviour can analyze using art-length method about secondary buckling.

  • PDF

A Study on the Corrosion Loss of Zinc Anodes of the Underwater Shell Plate (선저 아연판의 부식에 관한 연구)

  • Kim, Min-Suck;Lee, Jong-Mun;Kim, Jong-Hwa;Kang, Il-Kwon;Kim, Dong-Soo
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.19 no.1
    • /
    • pp.129-136
    • /
    • 2007
  • The component parts of the shell plate of a ship are steel. but the screw propeller or the bow thruster is a compound of bronze, nickel and aluminum. On account of the these different components between metals of the shell plate, the screw propeller and the bow thruster, which are underwater, the shell plate of a ship is corroded by the action of ionization. Authors investigated the corrosion loss of the zinc anodes which were attached to the bottom shell of the training ship Kaya for about two years. The obtained results were as follows:1. In case of the shell plate the difference of the corrosion loss according to port and starboard was almost nothing. But the corrosion loss of the forward part was more than that of the aftward part.2. There was little difference in the corrosion loss between the forward and the aftward part on the bilge keel.3. The corrosion loss of the fore, midship and aft part on the false keel were 24.7%, 22.4% and 23.9% respectively.4. The corrosion loss of the fore and the aft part on the false keel was more than that of the midship part.5. The corrosion loss of the bow thruster was greater than any other parts.6. The nearer the zinc anode to the screw propeller the more the corrosion loss on the stern frame, and the situation was also same as on the rudder.

An efficient finite element analysis model for thermal plate forming in shipbuilding

  • S.L. Arun Kumar;R. Sharma;S.K. Bhattacharyya
    • Ocean Systems Engineering
    • /
    • v.13 no.4
    • /
    • pp.367-384
    • /
    • 2023
  • Herein, we present the design and development of an efficient finite element analysis model for thermal plate forming in shipbuilding. Double curvature shells in the ship building industries are primarily formed through the thermal forming technique. Thermal forming involves heating of steel plates using heat sources like oxy-acetylene gas torch, laser, and induction heating, etc. The differential expansion and contraction across the plate thickness cause plastic deformation and bending of plates. Thermal forming is a complex forming technique as the plastic deformation and bending depends on many factors such as peak temperature, heating and cooling rate, depth of heated zone and many other secondary factors. In this work, we develop an efficient finite element analysis model for the thermo-mechanical analysis of thermal forming. Different simulations are reported to study the effect of various parameters affecting the process. Temperature dependent properties are used in the analysis and the finite element analysis model is used to identify the critical flame velocity to avoid recrystallization of plate material. A spring connected plate is modeled for structural analysis using spring elements and that helps in identifying the resultant shapes of various thermal forming patterns. Finally, detailed simulation results are reported to establish the efficacy, applicability and efficiency of the designed and developed finite element analysis model.

Simplified Collapse Analysis of Ship Transverse Structures

  • Yang, Park-Dal-Chi
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • v.1 no.1
    • /
    • pp.26-36
    • /
    • 1993
  • In this paper, a thoery for the static analysis of large plastic deformations of 3-dimentional frames, aiming at application to the collapse analysis of ship structures, is presented. In the frame analysis formulation, effects of shear deformations are included. A plastic hinge is inserted into the field of a beam and post-failure deformation of the plastic hinge is characterized by finite rotations and extensions. In order to model deep web frames of ship's structures into a framed structures, collapse of thin-walled plate girders is investigated. The proposed analysis method is applied to several ship structural models in the references.

  • PDF

Analysis of Process Parameters in the Incremental Roll Forming Process for the Application to Doubly Curved Ship Hull Plate (점진적 롤 성형 공정의 선박 곡가공 적용을 위한 공정 변수 분석)

  • Shim D. S.;Yoon S. J.;Lee S. R.;Seong D. Y.;Han Y. S.;Han M. S.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.322-325
    • /
    • 2005
  • In order to make a doubly-cowed sheet metal effectively, the sheet metal forming process has been developed by adopting the flexibility of the incremental forming process and the principle of bending deformation which causes slight deformation in thickness. The developed process is an unconstrained forming process without holder. The experimental equipment has been set up with the roll set which consists of two pairs of support rolls and one center roll. In order to analyze process parameters in the incremental roll forming process for the application to doubly curved ship hull plate, the orthogonal array is adopted. From the FEM results, among the process parameters, the distance between supporting rolls in pairs along the direction of one principal radius of curvature as well as the forming depth is shown to influence the generation of curvature in the same direction significantly. That is, the other distance between supporting rolls in pairs which are not located in the same direction of one principal radius of curvature, does not have an significant effect on the generation of the curvature in that direction. Also, the forming load and torque from the FEM simulation are acceptable to the system development of the incremental roll forming process for the forming of ship hull plate.

  • PDF

Estimation of Buckling and Plastic Behaviour according to the Analysis Model of the Stiffened Plate (보강판의 해석모델에 따른 좌굴 및 소성거동 평가)

  • Ko, Jae-Yong;Oh, Young-Cheol;Park, Joo-Shin
    • Journal of Navigation and Port Research
    • /
    • v.31 no.3 s.119
    • /
    • pp.271-279
    • /
    • 2007
  • Ship structures are basically an assembly of plate elements and estimation load-carrying capacity or the ultimate strength is one of the most important criterion for estimated safety assessment and rational design on the ship structure. Also, Structural elements making up ship plated structures do not work separately against external load. One of the critical collapse events of a ship structure is the occurrence of overall buckling and plastic collapse of deck or bottom structure subjected to longitudinal bending. So, the deck and the bottom plates are reinforced by a number af longitudinal stiffeners to increase their strength and load-carrying capacity. For a rational design avoiding such a sudden collapse, it is very important to know the buckling and plastic behaviour or collapse pattern of the stiffened plate under axial compression. In this present study, to investigate effect af modeling range, the finite element method are used and their results are compared varying the analysis ranges. When making the FEA model, six types of structural modeling are adopted varying the cross section of stiffener. In the present paper, a series of FEM elastoplastic large deflection analyses is performed on a stiffened plate with fiat-bar, angle-bar and tee-bar stiffeners. When the applied axial loading, the influences of cross-sectional geometries on collapse behaviour are discussed. The purpose of the present study is examined to numerically calculate the characteristics of buckling and ultimate strength behavior according to the analysis method of ship's stiffened plate subject to axial loading.

A Study on the Ultimate Strength Behavior according to Analysis Boundary at Stiffened Plate (선체보강판의 해석영역에 따른 최종강도거동에 관한 연구)

  • 박주신;고재용
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.262-269
    • /
    • 2004
  • Ship structures are basically an assembly of plate elements and the load-carrying capacity or the ultimate strength is one of the most important criteria for safety assessment and economic design. Also, Structural elements making up ship plated structures do not work separately, resulting in high degree of redundancy and complexity, in contrast to those of steel framed structures. To enable the behavior of such structures to be analyzed, simplifications or idealizations must essentially be made considering the accuracy needed and the degree of complexity of the analysis to be used. On this study, to investigate effect of analysis range, the finite element method are used and their results are compared varying the analysis ranges. The model has been selected from bottom panels of large merchant ship structures. For FEA, three types of structural modeling are adopted in terms of the extent of the analysis. The purpose of the present study is to numerically calculate the characteristics of ultimate strength behavior according to the analysis ranges of stiffened panels subject to uniaxial compressive loads.

  • PDF

Counter-deforming Method for a Bracket Design of a Ship Via Geometric Shape Deformation (기하적인 형상 변형을 이용한 선박 브라켓 부재의 역변형 설계)

  • Cheon, Sanguk;Kim, Hyeong-Cheol
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.5
    • /
    • pp.321-328
    • /
    • 2013
  • A method of designing a manufacturing shape of ship plate parts considering welding deformation is introduced. In this paper, the design shape of a bracket is deformed not by a thermoelastic method but by a pure geometric method. Deformation quantities are estimated based on data captured in the field and then a manufacturing design shape is obtained by deforming an original design shape by a geometric deformation method. The proposed method has been implemented and tested in the shipyard.

Vibration analysis of 2300 TEU container ship using power flow analysis program in medium-to-high frequency ranges (파워흐름해석 프로그램을 이용한 2300 TEU 컨테이너선의 중고주파 대역 진동해석)

  • 서성훈;박영호;홍석윤;길현권
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1061-1066
    • /
    • 2001
  • To predict vibrational energy density and intensity of beam-plate coupled complex structures in medium-to-high frequency ranges, Power Flow Finite Element Method(PFFEM) programs for plate, beam and some coupled structural elements are developed. The flexural, longitudinal and shear waves in plates are formulated and the joint element equations for multi-couped plates are fully developed. Also the wave transmission approach has been introduced to cover the energy transmission and reflection at the joint elements. Using the developed PFFEM program, vibration analysis for 2300TEU container ship model is performed and here the model data for this program are obtained by converting fonner FE model for structural analysis. This program predicts successfully the vibrational energy density and intensity upto 8,000 Hz for the ship model with over 50,000 DOF.

  • PDF