• Title/Summary/Keyword: Ship Operations Scenarios

Search Result 9, Processing Time 0.023 seconds

Export Container Remarshaling Planning in Automated Container Terminals Considering Time Value (시간가치를 고려한 자동화 컨테이너 터미널의 수출 컨테이너 이적계획)

  • Bae, Jong-Wook;Park, Young-Man;Kim, Kap-Hwan
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.33 no.2
    • /
    • pp.75-86
    • /
    • 2008
  • A remarshalling is one of the operational strategies considered importantly at a port container terminal for the fast ship operations and heighten efficiency of slacking yard. The remarshalling rearranges the containers scattered at a yard block in order to reduce the transfer time and the rehandling time of container handling equipments. This Paper deals with the rearrangement problem, which decides to where containers are transported considering time value of each operations. We propose the mixed integer programming model minimizing the weighted total operation cost. This model is a NP-hard problem. Therefore we develope the heuristic algorithm for rearrangement problem to real world adaption. We compare the heuristic algorithm with the optimum model in terms of the computation times and total cost. For the sensitivity analysis of configuration of storage and cost weight, a variety of scenarios are experimented.

A Study on the Establishment of Bunkering Safety Zone for Hydrogen Propulsion Ships in Coastal Area (연근해 수소추진선박의 벙커링 안전구역 설정에 관한 연구)

  • Sungha Jeon;Sukyoung Jeong;Dong Nam
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.6
    • /
    • pp.433-440
    • /
    • 2023
  • This study aims to establish safety zones for bunkering operations of hydrogen propulsion ships in coastal areas through risk assessment and evaluate their validity. Using a 350 kW-class ferry operating in Busan Port as the subject of analysis, with quantitative risk assessment based on accident consequence and frequency analysis, along with a social risk assessment considering population density. The results of the risk assessment indicate that all scenarios were within acceptable risk criteria and ALARP region. The most critical accident scenarios involve complete hose rupture during bunkering, resulting in jet flames (Frequency: 2.76E-06, Fatalities: 9.81) and vapor cloud explosions (Frequency: 1.33E-08, Fatalities: 14.24). For the recommended safety zone criteria in the 6% hose cross-sectional area leakage scenario, It could be appropriate criteria considering overall risk level and safety zones criteria for hydrogen vehicle refueling stations. This research contributes to establishing safety zone for bunkering operations of hydrogen propulsion ships through risk assessment and provides valuable technical guidelines.

Human Error Probability Assessment During Maintenance Activities of Marine Systems

  • Islam, Rabiul;Khan, Faisal;Abbassi, Rouzbeh;Garaniya, Vikram
    • Safety and Health at Work
    • /
    • v.9 no.1
    • /
    • pp.42-52
    • /
    • 2018
  • Background: Maintenance operations on-board ships are highly demanding. Maintenance operations are intensive activities requiring high man-machine interactions in challenging and evolving conditions. The evolving conditions are weather conditions, workplace temperature, ship motion, noise and vibration, and workload and stress. For example, extreme weather condition affects seafarers' performance, increasing the chances of error, and, consequently, can cause injuries or fatalities to personnel. An effective human error probability model is required to better manage maintenance on-board ships. The developed model would assist in developing and maintaining effective risk management protocols. Thus, the objective of this study is to develop a human error probability model considering various internal and external factors affecting seafarers' performance. Methods: The human error probability model is developed using probability theory applied to Bayesian network. The model is tested using the data received through the developed questionnaire survey of >200 experienced seafarers with >5 years of experience. The model developed in this study is used to find out the reliability of human performance on particular maintenance activities. Results: The developed methodology is tested on the maintenance of marine engine's cooling water pump for engine department and anchor windlass for deck department. In the considered case studies, human error probabilities are estimated in various scenarios and the results are compared between the scenarios and the different seafarer categories. The results of the case studies for both departments are also compared. Conclusion: The developed model is effective in assessing human error probabilities. These probabilities would get dynamically updated as and when new information is available on changes in either internal (i.e., training, experience, and fatigue) or external (i.e., environmental and operational conditions such as weather conditions, workplace temperature, ship motion, noise and vibration, and workload and stress) factors.

Analysis of the Prediction of Operation Processes based on Mode of Operation for Ships: Applying Delphi method

  • HyeRi Park;JeongMin Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.267-275
    • /
    • 2023
  • The digital transformation of the shipbuilding, shipping, and logistics sectors is predicted to lead to the introduction of autonomous ships and changes in the way ships are operated. The co-existence of various operation forms, such as autonomous operation and remote operation, with the existing operation methods is expected to lead to the transformation of the ship operation process and the emergence of new stakeholders. This paper studies the future ship operation process according to the change in ship operation method, predicts the change in the operating environment of future ships, and derives functional requirements by major tasks and stakeholders. The Delphi technique is applied to construct a ship operation scenario from the planning stage of voyage and cargo transport to the stage of arrival at the final destination port and discharge of cargo, and to predict future work changes by task and actor. Seafarers' activities are expected to be minimised by remote and autonomous operation, and experts in each field are expected to have responsibilities and tasks in different aspects of ship operation.

Development of a Deep-Learning Model with Maritime Environment Simulation for Detection of Distress Ships from Drone Images (드론 영상 기반 조난 선박 탐지를 위한 해양 환경 시뮬레이션을 활용한 딥러닝 모델 개발)

  • Jeonghyo Oh;Juhee Lee;Euiik Jeon;Impyeong Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1451-1466
    • /
    • 2023
  • In the context of maritime emergencies, the utilization of drones has rapidly increased, with a particular focus on their application in search and rescue operations. Deep learning models utilizing drone images for the rapid detection of distressed vessels and other maritime drift objects are gaining attention. However, effective training of such models necessitates a substantial amount of diverse training data that considers various weather conditions and vessel states. The lack of such data can lead to a degradation in the performance of trained models. This study aims to enhance the performance of deep learning models for distress ship detection by developing a maritime environment simulator to augment the dataset. The simulator allows for the configuration of various weather conditions, vessel states such as sinking or capsizing, and specifications and characteristics of drones and sensors. Training the deep learning model with the dataset generated through simulation resulted in improved detection performance, including accuracy and recall, when compared to models trained solely on actual drone image datasets. In particular, the accuracy of distress ship detection in adverse weather conditions, such as rain or fog, increased by approximately 2-5%, with a significant reduction in the rate of undetected instances. These results demonstrate the practical and effective contribution of the developed simulator in simulating diverse scenarios for model training. Furthermore, the distress ship detection deep learning model based on this approach is expected to be efficiently applied in maritime search and rescue operations.

Development of Kill Chain Based Effective Maritime Operations Model for Naval Task Forces (Kill Chain 기반 해상기동부대의 효과적인 해상작전 모델 제안)

  • Lee, Chul-Hwa;Jang, Dong-Mo;Lee, Tae-Gong;Lim, Jae-Sung
    • Journal of Information Technology and Architecture
    • /
    • v.9 no.2
    • /
    • pp.177-186
    • /
    • 2012
  • Navy establishes the Naval Task Forces (TF) for many kinds of maritime operations. Then the TF in the maritime environment performs simultaneous component operations such as ASUW (Anti-Surface Warfare), ASW (Anti-Submarine Warfare), AAW (Anti-Aircraft Warfare), and assault operations. The TF consists of many tactical systems for the completion of missions C4I, VOIP (Voice Over Internet Protocol), DMHS (Digital Massage Handling System), and TDLs (Tactical Data Links) such as LINK-11, 16, ISDL (Inter Site Data Link). When the TF executes naval operations to complete a mission, we are interested in the kill chain for the maritime operations in the TF. The kill chain is a standard procedure for the naval operations to crush enemy defenses. Although each ship has a procedure about a manual for 'how to fight', it leave something to be desired for the TF detailed kill chain currently. Therefore, in this paper, we propose the naval TF's kill chain to perform the naval operations. Then, the operational effectiveness of the TF in the kill chain environment is determined through operation scenarios of TDL system implementation. It is to see the operational information sharing effect to a data link model based on MND-AF OV 6c (statement of tracking operational status) in the maritime operations applied to TDL and is to identify improvements in information dissemination process. We made the kill chain of maritime TF for the effective naval operations.

Finding Hazard Factors by New Risks on Maritime Safety in Korea

  • Park, Deuk-Jin;Park, Seong-Bug;Yang, Hyeong-Sun;Yim, Jeong-Bin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.3
    • /
    • pp.278-285
    • /
    • 2016
  • The key features of maritime accidents are the change of their attributes by new risks from time to time. To prevent maritime accidents in Korea, the impacts by new risks on domestic safety environments should be identified or predicted. The purpose of this paper is to find the hazard factors by new risks on maritime safety in Korea. The meaning of new risks is the elements of accident hazard which is compiled from new or rare or unprecedented events in the worldwide maritime transportations. The problems of new risks are the lacks of optimum countermeasures to mitigate accident risks. Using the questionnaires with 152 event scenarios classified by 20 accident causes, the hazard identification and risk analysis of new risks was performed based on the Formal Safety Assessment (FSA) by IMO. A total of 22 Influence Diagrams, which is to depict the transit flows between accident causes to consequences, is used in the construction of 152 event scenarios. A total of 20 accidents causes is the same contents as the causation factors represented in Statistical Year Book for Maritime Accidents of Korean Maritime Safety Tribunals. After defining the evaluation equations to the response results of questionnaires by 46 experts, the work for risk analysis is carried out. As results from the analysis of 152 scenarios, it is known that the root cause to affect on maritime safety in Korea is the pressure of business competition and it led to the lacks of well experienced crews, the overload of vessel operations and crew's fatigue. In addition, as results from the analysis of 20 accident causes, the three accident causes are to be candidate as main issues in Korea such as the inadequate preparedness of departure, the neglecting of watch keeping in bridge and the inadequate management of ship operations. All of the results are thought to be as basic hazard factors to safety impediments. It is thus found that the optimum Risk Control Options to remove the hazard factors and to mitigate consequences required are the following two factors: business competition and crewing problems.

Probabilistic Risk Analysis of Dropped Objects for Corroded Subsea Pipelines (부식을 고려한 해저 파이프라인의 확률론적 중량물 낙하 충돌 위험도 해석)

  • Kumar, Ankush;Seo, Jung Kwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.2
    • /
    • pp.93-102
    • /
    • 2018
  • Quantitative Risk Assessment (QRA) has been used in shipping and offshore industries for many years, supporting the decision-making process to guarantee safe running at different stages of design, fabrication and throughout service life. The assessments of a risk perspective are informed by the frequency of events (probability) and the associated consequences. As the number of offshore platforms increases, so does the length of subsea pipelines, thus there is a need to extend this approach and enable the subsea industry to place more emphasis on uncertainties. On-board operations can lead to objects being dropped on subsea pipelines, which can cause leaks and other pipeline damage. This study explains how to conduct hit frequency analyses of subsea pipelines, using historical data, and how to obtain a finite number of scenarios for the consequences analysis. An example study using probabilistic methods is used.

Quantitative risk analysis of industial incidents occurring in trap boats (통발어선에서 발생하는 산업재해에 대한 정량적 위험성 분석)

  • Seung-Hyun LEE;Su-Hyung KIM;Kyung-Jin RYU;Yoo-Won LEE
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.2
    • /
    • pp.161-169
    • /
    • 2024
  • This study employs Bayesian network analysis to quantitatively evaluate the risk of incidents in trap boats, utilizing accident compensation approval data spanning from 2018 to 2022. With a dataset comprising 1,635 incidents, the analysis reveals a mortality risk of approximately 0.011 across the entire trap boat. The study significantly identifies variations in incident risks contingent upon fishing area and fishing processes. Specifically, incidents are approximately 1.22 times more likely to occur in coastal compared to offshore, and the risk during fishing processes outweighs that during maintenance operations by a factor of approximately 23.20. Furthermore, a detailed examination of incident types reveals varying incidence rates. Trip/slip incidents, for instance, are approximately 1.36 times more prevalent than bump/hit incidents, 1.58 times more than stuck incidents, and a substantial 5.17 times more than fall incidents. The study concludes by providing inferred mortality risks for 16 distinct scenarios, incorporating fishing areas, processes, and incident types. This foundational data offers a tailored approach to risk mitigation, enabling proactive measures suited to specific circumstances and occurrence types in the trap boat industry.