• Title/Summary/Keyword: Ship’s Speed

Search Result 555, Processing Time 0.025 seconds

A Study of the Change of Ship Speed according to the Ice Load Signal during Slow Ramming (저속 충격쇄빙 시 빙하중 신호에 따른 선속 변화 연구)

  • Ahn, Se-Jin;Lee, Tak-Kee
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.627-631
    • /
    • 2019
  • Recently, researchers in Korea and abroad actively have conducted research activities using the ARAON, a Korean icebreaking research vessel. The ARAON regularly conduct research activities in the Arctic and Antarctic waters every year. The icebreaking mode, which can be either continuous breaking or ramming, is determined by the conditions of the ice and the ice-covered waters. When the icebreaker encounters thick sea ice or an ice ridge, ramming is used. At that time, the speed of the ship generally is slower than that of continuous icebreaking. In this study, the ice load signal at the time of repetitive ramming during ARAON's 2012 Antarctic research voyage was analyzed. The time history of the ice load signal and the change in the speed of the ship used in ramming were compared with these values during continuous icebreaking.

Modeling and Simulation for the Initial Dynamics of a High Speed Underwater Vehicle Ejected from a Submerged Mother Ship (수중모함에서 사출되는 고속 수중운동체의 초기 거동 모델링 및 시뮬레이션)

  • Yoon, Hyeon Kyu;Cho, Hyeonjin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.227-235
    • /
    • 2016
  • Heavy-weight high speed underwater vehicle(HSUV) is launched from the submerged mother ship. For the safety point of view, it is important to confirm whether the HSUV would touch the launching mother ship. In this paper, the hydrodynamic force and moment were modeled by the polynomials of motion variables and the simple lift and drag acting on a plate and cylinder which consist of the HSUV's several parts. The mother ship was assumed as the Rankine half body to consider the flow field near the moving ship. Such hydrodynamic force and moment were included in the 6 DOF equations of motion of the HSUV and the dynamic simulations for the various conditions of the HSUV until the propeller activation were performed. Developed simulation program is expected to reduce the number of expensive sea trial test to develop safety logic of the HSUV at the initial firing stage.

Development of a High Speed, Coastal Passenger SWATH Ship with Good Speed Performance and Seakeeping Quality (내항성능과 속도성능이 우수한 고속 연안여객 소수선면 쌍동선형 개발)

  • H.H. Chun;M.S. Kim;Y.R. Joo;G.H. Lee;M.H. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.4
    • /
    • pp.87-97
    • /
    • 1998
  • One of good ways to make a ship perform well in rough seas is to reduce its waterplane area and accordingly is subject to a reduced wave exciting forties. However, a great reduction of the waterplane area may create a penalty in speed performance due to the increased ratio of the wetted area to the displacement volume. This paper suggests a new catamaran hull form which compromises the speed and seakeeping quality by increasing the waterplane area somehow compared with that of the conventional SWATH ship. A 350 passenger carrying SWATH ship with a cruising speed of 30 knots in sea state of 4 has been developed and its performance was validated by the model tests. The design concept resistance performance and seakeeping dualities of the design craft are presented together with its comparative performance comparison with other high speed crafts.

  • PDF

On the Control of Ship Maneuvering in Channel by Introducing the Fuzzy Neural Network (수로에 있어서 선박조종의 퍼지학습제어)

  • Koo, J. Y.;Lee, C. Y.
    • Journal of Korean Port Research
    • /
    • v.7 no.2
    • /
    • pp.61-68
    • /
    • 1993
  • Studies on the ship's automatic navigation & berthing control have been continued by way of solving the ship's mathematical model, but the results of such studies have not reached to our satisfactory level due to its non-linear characteristics at low speed. In this paper, the authors propose a new control system which can evaluate as closely as captain's decision-making by using the FNN(Fuzzy Neural Network) controller which can simulate captain's knowledge. This controller contains the concept of safety according to channel width. The learning data are drawn from ship Handling simulator(NavSim NMS-90 MK III) and represent the ship motion characteristics internally. According to learning procedure, the FNN controller can tune membership functions and identify fuzzy control rules automatically. The verified results show that the FNN controller is effective to incorporate captain's knowledge and experience of manoeuvrability in channel.

  • PDF

Effect of Speed Fluctuation of Towing Carriage on Measurement of Ship Resistance (예인 전차의 미소 속도 변화가 모형선 저항계측에 미치는 영향)

  • Kim, H.J.;Park, Y.H.;Kim, J.S.;Kim, H.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.4
    • /
    • pp.15-21
    • /
    • 1996
  • Recently speed control system of the towing carriage have been modified by applying a personal computer in the Ship Model Towing Tank of Seoul National University. With this system the carriage speed could be controled precisely in coincidently with a prescribed speed diagram to evaluate the effect of slight towing speed fluctuation caused by some residual current or standing waves which have believed as trivial phenomena in the towing tank. It is found that the slight speed fluctuation of the carriage could lead to serious error in measurement of resistance test of a ship.

  • PDF

Utilization of Planned Routes and Dead Reckoning Positions to Improve Situation Awareness at Sea

  • Kim, Joo-Sung;Jeong, Jung Sik;Park, Gyei-Kark
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.288-294
    • /
    • 2014
  • Understanding a ship's present position has been one of the most important tasks during a ship's voyage, in both ancient and modern times. Particularly, a ship's dead reckoning (DR) has been used for predicting traffic situations and collision avoidance actions. However, the current system that uses the traditional method of calculating DR employs the received position and speed data only. Therefore, it is not applicable for predicting navigation within the harbor limits, owing to the frequent changes in the ship's course and speed in this region. In this study, planned routes were applied for improving the reliability of the proposed system and predicting the traffic patterns in advance. The proposed method of determining the dead reckoning position (DRP) uses not only the ships' received data but also the navigational patterns and tracking data in harbor limits. The Mercator sailing formulas were used for calculating the ships' DRPs and planned routes. The data on the traffic patterns were collected from the automatic identification system and analyzed using MATLAB. Two randomly chosen ships were analyzed for simulating their tracks and comparing the DR method during the timeframes of the ships' movement. The proposed method of calculating DR, combined with the information on planned routes and DRPs, is expected to contribute towards improving the decision-making abilities of operators.

A Study of Hydrodynamic Forces Acting on a Ship Hull Under Lateral Low Speed Motion (저속 횡 이동하는 선박의 선체에 작용하는 유체력에 관한 연구)

  • 이윤석;김순갑
    • Journal of the Korean Institute of Navigation
    • /
    • v.23 no.2
    • /
    • pp.29-42
    • /
    • 1999
  • An accurate method of estimating ship maneuverability needs to be developed to evaluate precisely and improve the maneuverability of ships according to the water depth. In order to estimate maneuverability by a mathematical model. The hydrodynamic forces acting on a ship hull and the flow field around the ship in maneuvering motion need to be estimated. The ship speed new the berth is very low and the fluid flow around a ship hull is unsteady. So, the transient fluid motion should be considered to estimate the drag force acting on the ship hull. In the low speed and short time lateral motion, the vorticity is created by the body and grow up in the acceleration stage and the velocity induced by the vorticity affect to the body in deceleration stage. For this kind of problem, CFD is considered as a goof tool to understand the phenomena. In this paper, the 2D CFD code is used for basic consideration of the phenomena to solve the flow in the cross section of the ship considering the ship is slender and the water depth is large enough. The flow fields Added and hydrodynamic forces for the some prescribed motions are computed and compared with the preliminary experiment results. The comparison of the force with measurement is shown a fairly good agreement in tendency. The 3D Potential Calculation based on the Hess & Smith Theory is employed to predict the surge, sway added mass and yaw added moment of inertia of hydrodynamic coefficients for M/V ESSO OSAKA according to the water depth. The results are also compared with experimental data. Finally, the sway added mass of hydrodynamic coefficients for T/S HANNARA is suggested in each water depth.

  • PDF

Control System for Ship Collision Avoidance considering the Effect of Wind and Ship's Manoeuvrability

  • Im, Nam-Kyun;Lee, Seung-Keon;Hwang, Seong-Joon
    • Journal of Navigation and Port Research
    • /
    • v.34 no.2
    • /
    • pp.105-110
    • /
    • 2010
  • The studies on automatic ship collision avoidance system, which have been carried out in the last 10 years, are facing on new situation due to newly developed high technology such as computer and other information system. It was almost impossible to make it used in real navigation field 3-4 years ago because of the absence of any tool to give other ship's information, however recently developed technology suggests new possibility. This study is carried out to develop the automatic ship collision avoidance support system which considers ship's manoeuvrability into it's collision avoidance algorithm. One of the important part in ship collision avoidance system is collision decision module which can calculate collision risk with other ships and act properly to avoid the situation. Many of previous researches are using present ship's dynamic data such as present speed, position and course to calculate collision risk. However when a ship commences avoidance action, the real situation is quite different with one that has been estimated by the ship's initial data due to the ship's manoeuvring characteristic. Therefore it is better to take into account ship's manoeuvring characteristic from the stage of collision decision in ship collision avoidance system. In this study, these effects are included in the developed system. The proposed system are verified its usefulness in numerical simulation environments.

A Study on the Propulsion Performance of KCS in Still Water and Regular Wave

  • Lee, Sang-Min;Jeong, Uh-Cheul;Kim, Dae-Hae
    • Journal of Navigation and Port Research
    • /
    • v.37 no.1
    • /
    • pp.63-69
    • /
    • 2013
  • Since most merchant vessels are mainly influenced by the added resistance in an actual sea, they could be navigated more efficiently if this added resistance could be precisely predicted and then effectively reduced. In this paper, we have computed the effective horsepower based on the resistance performance in still water and then calculated the added resistance in regular wave in order to estimate a ship's propulsion performance on a voyage. Firstly, we have performed experiments using a model of KCS in a circulating water channel to estimate the flow characteristics around a container ship and the ship's resistance in still water. Then we have calculated the motion response function in regular wave as well as the values for the increase in resistance, and evaluated the ship's motion performance in waves according to the calculated response function. It was found that the resistance in waves increased because the ship's motion response value became larger as the ship's speed increased in the case of head sea. The effect of the added resistance could be reduced by maneuvering the ship to the encounter angle of $120^{\circ}$ in areas of long wavelengths and to head sea in areas of short wavelengths.

Prediction of ship power based on variation in deep feed-forward neural network

  • Lee, June-Beom;Roh, Myung-Il;Kim, Ki-Su
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.641-649
    • /
    • 2021
  • Fuel oil consumption (FOC) must be minimized to determine the economic route of a ship; hence, the ship power must be predicted prior to route planning. For this purpose, a numerical method using test results of a model has been widely used. However, predicting ship power using this method is challenging owing to the uncertainty of the model test. An onboard test should be conducted to solve this problem; however, it requires considerable resources and time. Therefore, in this study, a deep feed-forward neural network (DFN) is used to predict ship power using deep learning methods that involve data pattern recognition. To use data in the DFN, the input data and a label (output of prediction) should be configured. In this study, the input data are configured using ocean environmental data (wave height, wave period, wave direction, wind speed, wind direction, and sea surface temperature) and the ship's operational data (draft, speed, and heading). The ship power is selected as the label. In addition, various treatments have been used to improve the prediction accuracy. First, ocean environmental data related to wind and waves are preprocessed using values relative to the ship's velocity. Second, the structure of the DFN is changed based on the characteristics of the input data. Third, the prediction accuracy is analyzed using a combination comprising five hyperparameters (number of hidden layers, number of hidden nodes, learning rate, dropout, and gradient optimizer). Finally, k-means clustering is performed to analyze the effect of the sea state and ship operational status by categorizing it into several models. The performances of various prediction models are compared and analyzed using the DFN in this study.