• Title/Summary/Keyword: Ship's maneuvering

Search Result 155, Processing Time 0.03 seconds

A Study on the Maneuvering Area of Ship in Moving at Single Point Mooring (SPM 이안 선박의 조종영역에 관한 연구)

  • Kim, Jin-Soo
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.23
    • /
    • pp.78-97
    • /
    • 2007
  • SPM, which is an abbreviation of Single Point Mooring, also called as SBM(Single Buoy Mooring), is a special buoy besides the quays of the harbor for mooring ships, and is normally a 3m wide cone or cylinder shaped steel drum fixed underwater so it won't move, and is used for mooring cargo-work at outer port by laid-up ships and large crude oil carrier. The work of VLCC SPM mainly is accomplished on the open sea. On the open sea as a result of meteorological condition and the ocean wave influence, When the weather condition is get bed, peremptorily moving to the safety place, because of the gale and the billow, almost happened frequently, the pilot is unable to go on board and the tug is also unable to be used Now because of the bad weather the VLCC SPM moving to the other safety place frequently happened in the ulsan port. the construction of new harbor, it constructed many break water around SPM. So that it is necessary to propose the new standard about how to maneuvering area actually. The standard for handling ranges of the SPM operations was tested and verified by a simulation.. So that it is necessary to propose the new standard about how to maneuvering area actually.

  • PDF

A Study on the Estimation of Wind Forces Influence upon the Turning Ability of a Car Carrier Ship (자동차운반선의 선회성능에 미치는 풍하중의 영향에 관한 연구)

  • 최명식;이경우;오양국
    • Journal of the Korean Institute of Navigation
    • /
    • v.24 no.5
    • /
    • pp.397-403
    • /
    • 2000
  • Since very large and high-speed ships have been appeared in marine transportation from 1970s, these ships with poor maneuverability have made large-scale accidents frequently all over the world. The IMO(International Maritime Organization) recommended that ship designers should evaluate various maneuvering performance at initial stage and serve them to ship operators when they deliver a new ship. Meantime, it is expected that ships with large and wide superstructure would have poor maneuverability when they are affected by strong wind. Therefore, car carrier ship with large superstructure was selected to confirm how the ship responds to the external wind forces in this paper. The lateral and transverse projected areas above the water level were considered and ship behaviors were checked by change of rudder angles under severe wind conditions of different directions. In addition, hydrodynamic derivatives and coefficients were predicted from ship particulars and numerical calculations were carried out with the mathematical model of low speed maneuvering motions.

  • PDF

Ship Collision Avoidance Support Model in Close Quarters Situation (II) (근접상황 선박충돌회피지원모델에 관한 연구(II))

  • Yang Hyoung-Seon;Yea Byeong-Deok
    • Journal of Navigation and Port Research
    • /
    • v.29 no.10 s.106
    • /
    • pp.827-832
    • /
    • 2005
  • In this paper, as a fundamental study of ship collision avoidance supporting system in close quarters situation, we propose ship collision avoidance support model for decreasing ship collision accidents those have occurred due to navigator's unsuitable maneuvering in close encounter. This model will effectively support maneuvering for collision avoidance through displaying the feasible area and the method of collision avoidance using own ship's turning characteristic about action of target ship's keeping course and velocity.

The Relation between Human Behavior and Safety in the Collision Avoidance Situation

  • Park, Jung-Sun;Kobayashi, Hiroaki;Yea, Byeong-Deok
    • Journal of Navigation and Port Research
    • /
    • v.27 no.6
    • /
    • pp.611-618
    • /
    • 2003
  • It can be said that the relationship between the maneuvering ability of operators and the navigational environment affects the safe degree of navigation in the collision avoidance situation. In order to reduce the occurrence probability of accident and to maintain the safety, it is necessary to clarify the relationship between human behavior and navigational environment. In this study, therefore, we analyzed and discussed the relationship between the maneuvering characteristics and the safety focused on human behavior as a fundamental factor of marine accidents using ship handling simulator and questionnaire. As a result, we concluded that navigational environment changes variously and the maneuvering ability of operators also varies with the navigational environment, and the ship handling characteristics strongly affect the occurrence probability of accident.

Maneuverabilities of the M . S . Pusan 402 (부산 402호의 조종 성능에 관한 연구)

  • 김삼곤
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.1
    • /
    • pp.24-28
    • /
    • 1986
  • The maneuverabilities of the M. S. PUSAN 402 are studied, based on maneuvering indices and the data obtained from her Z test. The results obtained are summarized as follows: 1. The maneuvering indices K' and T' of the M. S. PUSAN 402 are 1. 490, 1.030 at 10$^{\circ}$ Z test and 2.644, 1.153 at 20$^{\circ}$ Z test and 3.382. 1. 027 at 30$^{\circ}$ Z test respectively. The above calculated values K', T' showed that her maneuverabilities are more increased when the rudder is used to large angle than to smaIl angle. 2. As her maneuvering indices K' and T' at 10$^{\circ}$ Z test are higher than the standard maneuvering indices of fishing boats, her turning ability was found to be higher but her obeying ability lower. 3. When the M. S. PUSAN 402 took a turn at her 10$^{\circ}$ test, running distance was about 8.4 times her own length and didn't exceed the standard maneuvering distance, 5 to 11 times ship's own length, therefore she was considered to have good maneuverabilities syntheticaIly.

  • PDF

Study on Stopping Ability of a Ship Equipped with Azimuth Propeller

  • Park, Jong-Yong;Oh, Pilgun;Kim, Taejin;Lee, Jun-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.13-18
    • /
    • 2020
  • An azimuth propeller can generate thrust in all directions by rotating its housing with an electric motor. An azimuth propeller can be operated using several methods to stop a ship. This study aims to derive an efficient method to stop a ship safely using an azimuth propeller through full-scale maneuvering trials with the research vessel "NARA" of Pukyong National University in 4.63 m/s (9 kts). Five methods with different azimuth propeller operations were tested to stop the ship. The test results confirmed that the simultaneous use of the thrust and the hydrodynamic force acting on the strut is the most effective method to stop the ship.

A Study on the Size of Turning Basin for Vessels of Arrival & Departure in the Berths (부두 입출항 선박을 위한 선회수역 크기에 관한 고찰)

  • Kim, Se-Won;Lee, Yoon-Suk;Park, Young-Soo
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.24 no.6
    • /
    • pp.872-883
    • /
    • 2012
  • Generally the determination of turning basin for vessels of entering & sailing in the berth has been considered in the design standard of harbor construction rules of the port. In this regard, the turning basin has been determined by the max size of entering vessel of the berth/port. But the size of turning basin may considered the ship's maneuvering ability, operator's skillful power, mooring equipments of the berth, arrangement of the fairway and the environment condition of weather & seas around the designated port area. So this paper suggested the optimum size of turning basin after studying the harbour design rules of the advanced marine countries and using by maneuvering simulator for turning basin size and also evaluated the design standard of harbor construction rules and minimum size of turning basin against ship's length at the Gangjung civil/naval port of Jeju Island.

A Study on the Correlation between Shiphandler's Subjective Evalution and Maneuvering Risk in Curved Narrow channel (굴곡된 협수로 통항에서 조선자의 주관적 위험감지도와 조종위험도와의 상관 관계에 관한 기초 연구)

  • 이동섭;윤점동;정태권
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.2 no.S1
    • /
    • pp.63-73
    • /
    • 1996
  • The assesment of the safety of ship's transit in a curved narrow channl consists of the maneuvering safety determined by the chance of running aground, the maneuvering difficulty determined by shop's workload, and shiphandler's subjective evaluation. In this study to examine the correlation between shiphandler's subjectice evaluation and the maneuvering risk, the real-time and full-mission shiphandling simulator in the Korean Marine Training & Research Institutes(KMTRI) was utilized. In the conning bridge of the shiphandling simulator, 50 experienced masters conducted masters conducted the modeled vessel of 60,000 deadweight tonnage along the designed channel under 3 different envrinmental conditions. The findings were as follows: (1) The frequencies of stress levels, work difficulties, vessel controllability and overall workload of shiphandlers are similar irrespective of environmental conditions and they are able to be represented as shiphandler's subjective evaluation. (2) It is possible to assess and analyze theoretically the correlation between the shiphandler's subjective ecaluation and maneuvering risk each environmental cindition by quantifying the data obtioned from the tests. The results are as follows: ① As the degree of maneuvering risk increases, the shiphandler's subjective evaluation increases sharply near the curvature area of the desgined channel. ② In the area of the curvature of the designed channel, maneuvering risk increases sharply with the danger of running aground under the environmental condition of current and wind comung from the stem.

  • PDF

The investigation of ship maneuvering with hydrodynamic effects between ships in curved narrow channel

  • Lee, Chun-Ki;Moon, Serng-Bae;Jeong, Tae-Gweon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.1
    • /
    • pp.102-109
    • /
    • 2016
  • The hydrodynamic interaction between two large vessels can't be neglected when two large vessels are closed to each other in restricted waterways such as in a harbor or narrow channel. This paper is mainly concerned with the ship maneuvering motion based on the hydrodynamic interaction effects between two large vessels moving each other in curved narrow channel. In this research, the characteristic features of the hydrodynamic interaction forces between two large vessels are described and illustrated, and the effects of velocity ratio and the spacing between two vessels are summarized and discussed. Also, the Inchon outer harbor area through the PALMI island channel in Korea was selected, and the ship maneuvering simulation was carried out to propose an appropriate safe speed and distance between two ships, which is required to avoid sea accident in confined waters. From the inspection of this investigation, it indicates the following result. Under the condition of $SP_{12}{\leq}0:5L$, it may encounter a dangerous tendency of grounding or collision due to the combined effect of the interaction between ships and external forces. Also considering the interaction and wind effect as a parameter, an overtaken and overtaking vessel in narrow channel can navigate while keeping its own original course under the following conditions; the lateral separation between two ships is about kept at 0.6 times of ship length and 15 degrees of range in maximum rudder angle. On the other hand, two ships while overtaking in curved narrow channel such as Inchon outer harbor in Korea should be navigated under the following conditions; $SP_{12}$ is about kept at 1.0 times of ship length and the wind velocity should not be stronger than 10 m/s.

Experimental Results of Ship's Maneuvering Test Using GPS

  • Yoo, Yun-Ja;Naknma, Yoshiyasu;Kouguchi, Nobuyoshi;Song, Chae-Uk
    • Journal of Navigation and Port Research
    • /
    • v.33 no.2
    • /
    • pp.99-104
    • /
    • 2009
  • The Kinematic GPS is well known to provide a quite good accuracy of positioning within an level. Although kinematic GPS assures high precision measurement on the basis of an appreciable distance between a reference station and an observational point, it has measurable distance restriction within 20 km from a reference station on land. Therefore, it is necessary to make out a simple and low-cost method to obtain accurate positioning information without distance restriction In this paper, the velocity integration method to get the precise velocity information of a ship is explained. The experimental results of Zig-zag maneuver and Williamson turn as the ship's maneuvering test, and other experimental results of ship's movement during leaving and entering the port with low speed were shown. From the experimental results, ship's course, speed and position are compared with those obtained by kinematic-GPS, velocity integration method and dead reckoning position using Gyro-compass and Doppler-log.