• Title/Summary/Keyword: Ship' hull

Search Result 1,258, Processing Time 0.03 seconds

Strain Decomposition Method in Hull Stress Monitoring System for Container Ship

  • Park, Jae-Woong;Kang, Yun-Tae
    • Journal of Ship and Ocean Technology
    • /
    • v.7 no.3
    • /
    • pp.56-65
    • /
    • 2003
  • The hull monitoring systems of container ships with four long-base gages give enough information for identifying the hull girder loads such as bending and torsional moments. But such a load-identification for container ships has not been known. In this paper, a load-identification method is suggested in terms of a linear matrix equation that the measured strain vector equals to the multiplication of the transformation matrix and the desired strain component vector. The equation is proved to be mathematically complete by the property of positive-definite determinant of the transformation matrix. The method is applied to a hull stress monitoring system for 8100TED container ship during sea trial, and the estimated external loads illustrate reasonable results in comparison with the pre-estimated results. This moment decomposition concept has also been tested in real operation conditions. The typical phenomena over the Suez Canal illustrated very suitable results comparing with the physical understandings. Henceforth, one can effectively use the proposed concept to monitor the hull girder loads such as bending and torsional moments.

Contribution Analysis to Identify the Source of Ship Hull Vibration (선체 진동 특성 규명을 위한 기여도 분석)

  • Lee, Jun Woo;Ahn, Se Jin;Oh, Jun Seok;Kim, Tae Hyeong;Jeong, Weui Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.5
    • /
    • pp.528-535
    • /
    • 2016
  • The vibration of a ship gives a significant effect on the noise radiated into the water. This paper focused on the vibration of ship hull due to the sub-generator located on the deck in the anchored condition. The contributions of the transfer paths between sub-generator and ship hull were analyzed using the TPA and the OTPA method. While the sub-generator was operation and the main engine was turned off, the vibrations were measured simultaneously at the 38 locations of the ship and the one hydrophone was arranged to measure the underwater radiated noise at the overside ship. The results of the transfer path by applying TPA and OTPA were compared and discussed. As a result of these methods, the top of stovepipe and valve are contributive. Reinforcing these structures is the most effective to reduce the vibration of ship hull.

A Study on the Effect of Topside and Interface on Hull in Whole Ship Analysis of Ship Type Offshore Structure (Ship Type 해양 구조물 전선 해석 시 Topside와 Interface가 Hull에 미치는 영향 연구)

  • Seo, Joon-Gyu;Kang, Ho-Yun;Park, Jung-Ki
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.5
    • /
    • pp.314-321
    • /
    • 2021
  • In the existing whole ship analysis, topside was modeled as mass element. However recently, the topside is modeled as beam element due to the owner's requirement to improve the maturity of the whole ship FE model. To follow the owner'srequirement, detailed information for topside drawing and modeling, which may delay analysis schedule, is needed. However, it is hard to respond effectively to this matter due to the lack of study on the topside from the hull perspective. Therefore in this study, the effect of the topside on the hull is investigated when the topside is modeled as a mass element or beam element respectively. In addition, the interface modeling method is analyzed to verify modeling method used in the existing whole ship analysis. The results indicate that the interface and topside modeling method used in existing whole ship analysis are appropriate. This conclusion will be the technical basis for responding to owner's requirement about the topside modeling method.

A Study on the Characteristics of the Sea Ship and the River Ship′s Hull Form in the Chosun Period of Korea (조선시대 해선과 강선의 선형특성)

  • Choi, Byung-Moon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.6
    • /
    • pp.102-113
    • /
    • 2004
  • A name of 'Sea Ship' and 'River Ship' had been used based on the comprehension for the difference of ship's hull form in Chosun period. We can find a number of literature describing the situation which transferred the cargo from Sea Ship to River Ship because Sea Ship could not go upstream in the river of which the current is fast and the water depth is low. The reason why Sea Ship could not go upstream was that the bottom of Sea Ship was narrow, it means the non-flat bottom. Generally Sea Ship had short length, wide breadth, so L/B of 2.2∼3.0, and high draft and depth. River Ship has long length, narrow breadth, so L/B of 5.0∼6.3, and low draft and the flat bottom in order to adapt to the low water depth of the river.

Dynamic response characteristics of an innovative turretless low motion FPSO hull in central GoM ultra-deep waters

  • Zou, Jun
    • Ocean Systems Engineering
    • /
    • v.12 no.2
    • /
    • pp.173-223
    • /
    • 2022
  • In oil and gas industry, FPSO concept is the most popular hull form and ship shaped hull form dominants the FPSO market. Only a non-ship-shaped hull in operations with minor market shares is the cylindrical FPSO hull with medium to small storage capability. To add contracting options and competitions to reduce field development costs, an innovative turretless low motion hull, eco-FPSO, with 1MM bbls oil storage capacity and suitable for installing topsides modulars and equipping with regular SCRs, was first introduced in Zou (2020a). Dynamic characteristic responses of the eco-FPSO compared to the traditional SS-FPSO hull and DD-Semi platform are presented and discussed in this paper, suitability and feasibility of the proposed hull have been demonstrated and validated through extensive analyses in 10-yrp, 100-yrp and 1,000-yrp hurricanes in ultra-deepwater central GoM.

Hull Form Design for Baltic Ice Class Aframax Tanker

  • Park Kyung-Duk;Son Jin-Soo
    • Journal of Ship and Ocean Technology
    • /
    • v.9 no.2
    • /
    • pp.29-36
    • /
    • 2005
  • A hull form of Baltic ice class IA Aframax tanker has been developed taking into consideration of powering performance in brash ice channels based on IA class rules. Speed performance of the ship hull form in normal seagoing has been validated through model tests in a towing tank. The hull form design developed in this work has demonstrated good speed performance in normal seagoing although the ship design is entitled to ice class IA.

Development of an Object-Oriented Initial Hull Structural Design System (객체 지향 초기 선체 구조 설계 시스템 개발)

  • Roh M.-I.;Lee K.-Y.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.4
    • /
    • pp.244-253
    • /
    • 2005
  • In the initial ship design stage of shipyards, the hull form design, the basic design (compartment modeling and ship calculation), and the hull structural design are being performed by different systems. Thus, the problem on interfaces between these systems occurs. To solve this, we developed the hull form design system 'EzHULL' and the compartment modeling and ship calculation system 'EzCOM-PART' for developing finally an integrated ship design system. And, in this study, we present an object-oriented hull structural design .system 'EzSTRUCT', which is developed recently. A structural design in an initial design stage can be frequently changed, because the design is not firmly determined yet. Therefore, designers perform the simplified structural modeling with bigger structural parts (or objects) such as deck, longitudinal bulkhead, etc. in the initial design stage, and the detailed structural modeling with smaller structural parts such as plate, seam, slot, etc. in the detailed design stage. However, the existing hull structural CAD system used in a shipyard is not efficient in generating a 3D CAD model in the initial design stage, because it has difficulty in handling frequent changes in design. Therefore, designers initially draw 2D drawings in the initial design stage, and generate the 3D CAD model from these 2D drawings in the detailed design and production design stages. In this study, the hull structural design system, which can efficiently generate a 3D CAD model through rapid modeling at an initial design stage, was developed in this study To evaluate the applicability of the developed system, we applied it to hull structural modeling of various ships such as a VLCC, a bulk carrier, etc. As a result, it could efficiently generate a 3D CAD model of a hull structure.

RANS simulation of cavitation and hull pressure fluctuation for marine propeller operating behind-hull condition

  • Paik, Kwang-Jun;Park, Hyung-Gil;Seo, Jongsoo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.502-512
    • /
    • 2013
  • Simulations of cavitation flow and hull pressure fluctuation for a marine propeller operating behind a hull using the unsteady Reynolds-Averaged Navier-Stokes equations (RANS) are presented. A full hull body submerged under the free surface is modeled in the computational domain to simulate directly the wake field of the ship at the propeller plane. Simulations are performed in design and ballast draught conditions to study the effect of cavitation number. And two propellers with slightly different geometry are simulated to validate the detectability of the numerical simulation. All simulations are performed using a commercial CFD software FLUENT. Cavitation patterns of the simulations show good agreement with the experimental results carried out in Samsung CAvitation Tunnel (SCAT). The simulation results for the hull pressure fluctuation induced by a propeller are also compared with the experimental results showing good agreement in the tendency and amplitude, especially, for the first blade frequency.

Practical Hull Form Design using VOB (VOB를 이용한 선형 설계 실용화에 대한 연구)

  • Kim, Hyun-Cheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.235-242
    • /
    • 2016
  • In general, ship hull form design is carried out in two stages. In the first stage, the longitudinal variation of the sectional area curves is adapted from a similar mother ship to determine the volume distribution in ships. At this design stage, the initial design conditions of displacement, longitudinal center of buoyancy, etc. are satisfied and the global hydrodynamic properties of the structure are optimized. The second stage includes the local designing of the sectional forms. Sectional forms are related to the local pressure resistance in the fore- and aft-body shapes, cargo boundaries, interaction between the hull and propeller, etc. These relationships indicate that the hull sections need to be optimized in order to minimize the local resistance. The volumetric balanced (VOB) variation of ship hull forms has been suggested by Kim (2013) as a generalized, systematic variation method for determining the sectional area curves in hull form design. This method is characterized by form parameters and is based on an optimization technique. This paper emphasizes on an extensional function of the VOB considering a geometrical wave profile. We select a container ship and an LNG carrier to demonstrate the applicability of the proposed technique. Through analysis, we confirm that the VOB method, considering the geometrical wave profile, can be used as an efficient tool in the hull form design for ships.

A Study on Hull-Form Design for Ships Operated at Two Speeds (두 가지 속도에서 운항하는 선박의 형상설계에 관한 연구)

  • Kim, Tae Hoon;Choi, Hee Jong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.4
    • /
    • pp.467-474
    • /
    • 2018
  • The purpose of this study is related to automatic hull-form design for ships operating at two speeds. Research was conducted using a series 60 ($C_B=0.6$) ship as a target, which has the most basic ship hull-form. Hull-form development was pursued from the viewpoint of improving resistance performance. In particular, automatic hull-form design for a ship was performed to improve wave resistance, which is closely related to hull-forms. For this purpose, we developed automatic hull-form design software for ships by combining an optimization technique, resistance prediction technique and hull-form modification technique, appling the software developed to a target ship. A sequential quadratic programming method was used for optimization, and a potential-based panel method was used to predict resistance performance. A Gaussian-type modification function was developed and applied to change the ship hull-form. The software developed was used to design a target ship operating at two different speeds, and the performance of the resulting optimized hull was compared with the results of the original hull. In order to verify the validity of the program developed, experimental results obtained in model tests were compared with calculated values by numerical analysis.