• 제목/요약/키워드: Shikonin

검색결과 52건 처리시간 0.02초

Detection of Spurious Jindo Hongju

  • Choi, Kap-Seong;Song, Bo-Hyeon;Kim, Jung-Ho
    • 한국식품저장유통학회:학술대회논문집
    • /
    • 한국식품저장유통학회 1996년도 임시총회 및 제8차 학술발표회 진행표 및 발표논문 초록
    • /
    • pp.25-25
    • /
    • 1996
  • ;Jindo Hongju is an unique red-colored traditional distilled wine of Korea. The unique attractive color of Jindo Hongju is due to the pigments of gromwell (Lithospermum erythrorhizon) root, derivatives of naphtoquinone such as shikonin and acetylshikonin. Which are extracted during the distillation process. The attractive color of the gromwell pigments is easily changed to dark red or to brown causing deterioration of the Quality of Jindo Hongju. Due to the discoloration of the pigments and to the limited supply of gromwell roots, some brewers manufacture spurious Jindo Hongju using artificial colorants. This study was performed to devise a simple method of detecting spurious Jindo Hongju products. The color of the gromwell pigments was greatly affected by pH change and the change could be demonstrated by the change of the absorption spectrum. At pH 4.0 the normal pH of Jindo Hongju, the absorption spectra of gromwell pigments and genuine Hongju products showed an absorption maximum of 520 nm. The absorption maximum was shifted to 570 nm and to 616 nm as the pH was raised to 7.0 and 11.0 respectively. This transition due to the pH change was also demonstrated on em chromaticity diagram. The characteristic transition due to pH change of gromwell pigment solution was not observed with an artificial colorant (red No.2) which was suspected to be used in the manufacture of imitation products. The absorption spectra of most of the Jindo Hongju collected from the market were similar to that of the gromwell pigments and showed the characteristic transition due to pH change with the addition of NaOH. However, with a few of the products, the absorption spectra was similar to that of the artificial colorant and the characteristic transition due to pH change was not observed, indicating these products might have been forged. The result of study suggests that the transition of the absorption spectrum and the change of the color due to pH change be used for the detection of imitation products. Farther more, since, at pH above 9.0, the color of the gromwell pigments and genuine Jindo Hongju could be visually differentiated from that of the artificial colorant and forged products, it might be possible that the forged products be easily detected by raising the pH to above 9.0 and visually comparing the color with that of the gromwell pigment at the same pH.me pH.

  • PDF

Inhibitory Role of TRIP-Br1/XIAP in Necroptosis under Nutrient/Serum Starvation

  • Sandag, Zolzaya;Jung, Samil;Quynh, Nguyen Thi Ngoc;Myagmarjav, Davaajargal;Anh, Nguyen Hai;Le, Dan-Diem Thi;Lee, Beom Suk;Mongre, Raj Kumar;Jo, Taeyeon;Lee, MyeongSok
    • Molecules and Cells
    • /
    • 제43권3호
    • /
    • pp.236-250
    • /
    • 2020
  • Currently, many available anti-cancer therapies are targeting apoptosis. However, many cancer cells have acquired resistance to apoptosis. To overcome this problem, simultaneous induction of other types of programmed cell death in addition to apoptosis of cancer cells might be an attractive strategy. For this purpose, we initially investigated the inhibitory role of TRIP-Br1/XIAP in necroptosis, a regulated form of necrosis, under nutrient/serum starvation. Our data showed that necroptosis was significantly induced in all tested 9 different types of cancer cell lines in response to prolonged serum starvation. Among them, necroptosis was induced at a relatively lower level in MCF-7 breast cancer line that was highly resistant to apoptosis than that in other cancer cell lines. Interestingly, TRIP-Br1 oncogenic protein level was found to be very high in this cell line. Up-regulated TRIP-Br1 suppressed necroptosis by repressing reactive oxygen species generation. Such suppression of necroptosis was greatly enhanced by XIAP, a potent inhibitor of apoptosis. Our data also showed that TRIP-Br1 increased XIAP phosphorylation at serine87, an active form of XIAP. Our mitochondrial fractionation data revealed that TRIP-Br1 protein level was greatly increased in the mitochondria upon serum starvation. It suppressed the export of CypD, a vital regulator in mitochondria-mediated necroptosis, from mitochondria to cytosol. TRIP-Br1 also suppressed shikonin-mediated necroptosis, but not TNF-α-mediated necroptosis, implying possible presence of another signaling pathway in necroptosis. Taken together, our results suggest that TRIP-Br1/XIAP can function as onco-proteins by suppressing necroptosis of cancer cells under nutrient/serum starvation.