• 제목/요약/키워드: Shikimate pathway

검색결과 18건 처리시간 0.031초

Shikimate Metabolic Pathway Engineering in Corynebacterium glutamicum

  • Park, Eunhwi;Kim, Hye-Jin;Seo, Seung-Yeul;Lee, Han-Na;Choi, Si-Sun;Lee, Sang Joung;Kim, Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권9호
    • /
    • pp.1305-1310
    • /
    • 2021
  • Shikimate is a key high-demand metabolite for synthesizing valuable antiviral drugs, such as the anti-influenza drug, oseltamivir (Tamiflu). Microbial-based strategies for shikimate production have been developed to overcome the unstable and expensive supply of shikimate derived from traditional plant extraction processes. In this study, a microbial cell factory using Corynebacterium glutamicum was designed to overproduce shikimate in a fed-batch culture system. First, the shikimate kinase gene (aroK) responsible for converting shikimate to the next step was disrupted to facilitate the accumulation of shikimate. Several genes encoding the shikimate bypass route, such as dehydroshikimate dehydratase (QsuB), pyruvate kinase (Pyk1), and quinate/shikimate dehydrogenase (QsuD), were disrupted sequentially. An artificial operon containing several shikimate pathway genes, including aroE, aroB, aroF, and aroG were overexpressed to maximize the glucose uptake and intermediate flux. The rationally designed shikimate-overproducing C. glutamicum strain grown in an optimized medium produced approximately 37.3 g/l of shikimate in 7-L fed-batch fermentation. Overall, rational cell factory design and culture process optimization for the microbial-based production of shikimate will play a key role in complementing traditional plant-derived shikimate production processes.

CRISPR-Driven Genome Engineering for Chorismate- and Anthranilate-Accumulating Corynebacterium Cell Factories

  • Hye-Jin Kim;Si-Sun Choi;Eung-Soo Kim
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권10호
    • /
    • pp.1370-1375
    • /
    • 2023
  • In this study, we aimed to enhance the accumulation of chorismate (CHR) and anthranilate (ANT), key intermediates in the shikimate pathway, by modifying a shikimate over-producing recombinant strain of Corynebacterium glutamicum [19]. To achieve this, we utilized a CRISPR-driven genome engineering approach to compensate for the deletion of shikimate kinase (AroK) as well as ANT synthases (TrpEG) and ANT phosphoribosyltransferase (TrpD). In addition, we inhibited the CHR metabolic pathway to induce CHR accumulation. Further, to optimize the shikimate pathway, we overexpressed feedback inhibition-resistant Escherichia coli AroG and AroH genes, as well as C. glutamicum AroF and AroB genes. We also overexpressed QsuC and substituted shikimate dehydrogenase (AroE). In parallel, we optimized the carbon metabolism pathway by deleting the gntR family transcriptional regulator (IolR) and overexpressing polyphosphate/ATP-dependent glucokinase (PpgK) and glucose kinase (Glk). Moreover, acetate kinase (Ack) and phosphotransacetylase (Pta) were eliminated. Through our CRISPR-driven genome re-design approach, we successfully generated C. glutamicum cell factories capable of producing up to 0.48 g/l and 0.9 g/l of CHR and ANT in 1.3 ml miniature culture systems, respectively. These findings highlight the efficacy of our rational cell factory design strategy in C. glutamicum, which provides a robust platform technology for developing high-producing strains that synthesize valuable aromatic compounds, particularly those derived from the shikimate pathway metabolites.

Expression, Purification and Properties of Shikimate Dehydrogenase from Mycobacterium Tuberculosis

  • Zhang, Xuelian;Zhang, Shunbao;Hao, Fang;Lai, Xuhui;Yu, Haidong;Huang, Yishu;Wang, Honghai
    • BMB Reports
    • /
    • 제38권5호
    • /
    • pp.624-631
    • /
    • 2005
  • Tuberculosis, caused by Mycobacterium tuberculosis, continues to be one of the main diseases to mankind. It is urgent to discover novel drug targets for appropriate antimicrobial agents against this human pathogen. The shikimate pathway is onsidered as an attractive target for the discovery of novel antibiotics for its essentiality in bacteria and absence in mammalian cells. The Mycobacterium tuberculosis aroE-encoded shikimate dehydrogenase was cloned, expressed and purified. Sequence alignment analysis shows that shikimate dehydrogenase of Mycobacterium tuberculosis exhibit the pattern of G-X-(N/S)-V-(T/S)-X-PX-K, which is highly conserved within the shikimate dehydrogenase family. The recombinant shikimate dehydrogenase spectrum determined by CD spectroscopy showed that the percentages for $\alpha$-helix, $\beta$-sheet, $\beta$-turn, and random coil were 29.2%, 9.3%, 32.7%, and 28.8%, respectively. The enzymatic characterization demonstrates that it appears to be fully active at pH from 9.0 to 12, and temperature $63^{\circ}C$. The apparent Michaelis constant for shikimic acid and $NADP^+$ were calculated to be about $29.5\;{\mu}M$ and $63\;{\mu}M$. The recombinant shikimate dehydrogenase catalyzes the substrate in the presence of $NADP^+$ with an enzyme turnover number of $399\;s^{-1}$. Zymological studies suggest that the cloned shikimate dehydrogenase from M. tuberculosis has a pretty activity, and the work should help in the discovery of enzyme inhibitors and further of possible antimicrobial agents against Mycobacterium tuberculosis.

Effects of tktA, $aroF^{FBR}$and aroL Expression in the Tryptophan-Producing Escherichia coli

  • Kim, Tae-Hyun;Namgoong, Suk;Kwak, Joon-Hyeok;Lee, Se-Yong;Lee, Heung-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권6호
    • /
    • pp.789-796
    • /
    • 2000
  • In order to analyze the effects of tktA, $aroF^{FBR}$, and aroL expression in a tryptophan-producing Escherichia coli, a series of plasmids carrying the genes were constructed. Introduction of tktA, $aroF^{FBR}$, and aroL into the E. coli strain resulted in approximately 10-20 fold increase in the activities of transketolase, the feedback inhibition-resistant 3-deoxy-D-arabinoheptulsonate-7-phosphate synthase, and shikimate kinase. Expression of $aroF^{FBR}$ in the aroB mutant strain of E. coli resulted in the accumulation of 10 mM of 3-deoxy-D-arabinoheptulsonate-7-phosphate (DAHP) in the medium. Simultaneous expression of tktA and $aroF^{FBR}$ in the strain further increased the amount of excreted DAHP to 20 mM. In contrast, the mutant strain which has no gene introduced accumulated 0.5 mM of DAHP. However, the expression of tktA and $aroF^{FBR}$ in a tryptophan-producing E. coli strain did not lead to the increased production of tryptophan, but instead, a significant amount of shikimate, which is an intermediate in the tryptophan biosynthetic pathway, was excreted to the growth medium. Despite the fact that additional expression of shikimate kinase in the strain could possibly remove 90% of excreted shikimate to 0.1 mM, the amount of tryptophan produced was still unchanged. Removing shikimate using a cloned aroL gene caused the excretion of glutamate, which suggests disturbed central carbon metabolism. However, when cultivated in a complex medium, the strain expressing tktA, $aroF^{FBR}$, and aroL produced more tryptophan than the parental strain. These data indicate that additional rate-limiting steps are present in the tryptophan biosynthetic pathway, and the carbon flow to the terminal pathway is strictly regulated. Expressing tktA in E. coli cells appeared to impose a great metabolic burden to the cells as evidenced by retarded cell growth in the defined medium. Recombinant E. coli strains harboring plasmids which carry the tktA gene showed a tendency to segregate their plasmids almost completely within 24h.

  • PDF

Cloning, Expression, and Characterization of a Cold-Adapted Shikimate Kinase from the Psychrophilic Bacterium Colwellia psychrerythraea 34H

  • Nugroho, Wahyu Sri Kunto;Kim, Dong-Woo;Han, Jong-Cheol;Hur, Young Baek;Nam, Soo-Wan;Kim, Hak Jun
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권12호
    • /
    • pp.2087-2097
    • /
    • 2016
  • Most cold-adapted enzymes possess higher $K_m$ and $k_{cat}$ values than those of their mesophilic counterparts to maximize the reaction rate. This characteristic is often ascribed to a high structural flexibility and improved dynamics in the active site. However, this may be less convincing to cold-adapted metabolic enzymes, which work at substrate concentrations near $K_m$. In this respect, cold adaptation of a shikimate kinase (SK) in the shikimate pathway from psychrophilic Colwellia psychrerythraea (CpSK) was characterized by comparing it with a mesophilic Escherichia coli homolog (EcSK). The optimum temperatures for CpSK and EcSK activity were approximately $30^{\circ}C$ and $40^{\circ}C$, respectively. The melting points were $33^{\circ}C$ and $45^{\circ}C$ for CpSK and EcSK, respectively. The ${\Delta}G_{H_2O}$ (denaturation in the absence of denaturing agent) values were 3.94 and 5.74 kcal/mol for CpSK and EcSK, respectively. These results indicated that CpSK was a cold-adapted enzyme. However, contrary to typical kinetic data, CpSK had a lower $K_m$ for its substrate shikimate than most mesophilic SKs, and the $k_{cat}$ was not increased. This observation suggested that CpSK may have evolved to exhibit increased substrate affinity at low intracellular concentrations of shikimate in the cold environment. Sequence analysis and homology modeling also showed that some important salt bridges were lost in CpSK, and higher Arg residues around critical Arg 140 seemed to increase flexibility for catalysis. Taken together, these data demonstrate that CpSK exhibits characteristics of cold adaptation with unusual kinetic parameters, which may provide important insights into the cold adaptation of metabolic enzymes.

녹숙(綠熟)고추의 저온저장(低溫貯藏)에 따른 종자갈변(種子褐變)에 관(關)한 생리화학적연구(生理化學的硏究) -제 1 보(第 1 報) 종자갈변(種子褐變)에 관계(關係)되는 기질(基質)과 중간대사성분(中間代謝成分)의 변화(變化)- (Physio-chemical studies on the seed browning in mature green peppers stored at low-temperature (Part 1) -Changes in between-step metabolites and substrates in the seed-browning effect-)

  • 이성우
    • 한국식품과학회지
    • /
    • 제3권1호
    • /
    • pp.29-36
    • /
    • 1971
  • 감미종(甘味種) 소형(小型)고추인 Zairasisi를 저온저장(低溫貯藏)하니 종자(種子)의 갈변(褐變)이 급속(急速)히 일어났기에 여기에 주목(注目)하여 갈변기질(褐變基質)인 polyphenol 성분(成分)을 검색(檢索) 정량(定量)하고 이들 기질(基質)에 이르는 중간(中間) 대사(代謝) 성분(成分)의 변화(變化)를 측정(測定) 고찰(考察)하였다. (1) 종자(種子)의 polyphenol 성분(成分)으로서 chlorogenic acids가 검출(檢出)되었고 flavanol type polyphenols는 검출(檢出)되지 않았다. (2) Chlorogenic acid와 total polyphenol 함량(含量)은 저온처리(低溫處理)에 의하여 급증(急增)하고 갈변후(褐變後)는 감소하여 상온구(常溫區)보다 오히려 함량(含量)이 낮아졌다. (3) 중간대사(中間代謝) 성분(成分)인 phenylalanine, tyrosine, shikimic acid 함량(含量)은 저온처리(低溫處理)에 의하여 크게 증가(增加)하고 있으니 shikimate 계로(系路)가 활발(活潑)해지는 것으로 짐작된다. (4) 효소(酵素)에 대(對)한 특이적(特異的)인 조해제(阻害劑)와 호흡기질(呼吸基質)의 조직(組織) 호흡(呼吸)에 미치는 조해(阻害) 및 첨가(添加) 효과(效果)를 측정(測定)한 결과(結果) 저온처리(低溫處理)에 의하여 고추종자(種子)의 당(糖)은 EMP 계로(系路)를 활발히 움직이다가 이에 연결(連結)되는 TCA cycle에 jaming이 일어남에 따라 phosphoenolpyruvate와 erythrose-4-phosphate가 활발히 결합(結合)하고 shikimate 계로(系路)가 활발해져서 polyphenol 물질(物質)이 활발히 생합성(生合成)된다는 것을 추정(推定)할 수 있었다. (5) 저온처리(低溫處理)에 의하여 고추종자(種子)의 K ion 유출량(流出量)이 증가(增加)하였기에 갈변(褐變)에 따라 원형질막(原形質膜) 이상(異常)이 생긴 것을 짐작 할 수 있었다.

  • PDF

식물에서 shikimate 및 방향족 아미노산 생합성 경로와 이의 대사공학적 응용 (Biosynthetic pathway of shikimate and aromatic amino acid and its metabolic engineering in plants)

  • 임선형;박상규;하선화;최민지;김다혜;이종렬;김영미
    • Journal of Plant Biotechnology
    • /
    • 제42권3호
    • /
    • pp.135-153
    • /
    • 2015
  • 식물의 페닐알라닌, 티로신, 그리고 트립토판과 같은 방향족 아미노산은 단백질 합성의 구성 성분 뿐만 아니라 다양한 이차 대사물질들의 전구물질들이다. 이러한 방향족 아미노산 유래의 화합물들은 식물의 색소와 세포벽 구성성분을 포함하는 다양한 페놀릭 화합물들의 구성성분이자, 옥신과 살리실산과 같은 식물 호르몬으로써 중요한 역할을 수행한다. 또한 이들은 인간의 영양과 건강을 증진하는 높은 잠재력을 지니는 알칼로이드 및 글루코시놀레이트와 같은 천연산물로써 역할을 한다. 방향족 아미노산의 생합성경로는 shikimate 경로로부터 유래되는 공통의 중간기질인 chorismate를 공유한다. 트립토판은 중간기질로 anthranilate를 통해 합성되고, 페닐알라닌 및 티로신은 중간기질인 prephenate를 통해 합성된다. 본 논문에서는 방향족 아미노산 생합성경로에 관련한 모든 단계의 효소와 전사/전사후 수준에서의 그들의 유전자 조절에 대한 최근 연구들에 대해 종합적으로 되짚어 보면서, 추가적으로 식물의 방향족 아미노산 유래의 천연물질 생산을 증진시키기 위해 그 동안 시도되어온 대사 공학적 노력들에 대해서 소개하고자 한다.

탄수화물 분해 세균 Microbacterium aurum KACC 15219T의 유전체 염기서열 해독 (Complete genome sequence of Microbacterium aurum strain KACC 15219T, a carbohydrate-degrading bacterium)

  • 정연균;정병권;박창언;제랄드 콘라드 이발;김상준;신재호
    • 미생물학회지
    • /
    • 제55권2호
    • /
    • pp.164-166
    • /
    • 2019
  • 이 연구에서는 Microbacterium aurum KACC $15219^T$ (=IFO $15204^T$ = DSM $8600^T$)의 완전한 유전체 서열이 해독되었다. 하나의 원형 염색체는 3.42 Mbp였으며 G+C 함량이 69.9%였다. 해당 염색체 염기서열을 주석화한 결과, 총 3,096개의 유전자 서열이 발견되었다. 16종 이상의 탄소원을 분해하는 것으로 알려진 M. aurum KACC $15219^T$에는 방향족 아미노산 합성 기질인 quinic acid를 비롯한 다양한 탄소원의 이용과 관련된 유전자가 존재하였다. M. aurum KACC $15219^T$의 유전체 정보는 이 미생물에 대한 이해를 높이고 산업적인 이용을 위한 기반이 될 것이다.

대장균에서 5-Enolpyruvylshikimate 3-Phosphate Synthase의 대량 발현 및 Periplasmic Space로의 Transport (Overexpression and Periplasmic Transport of 5-Enolpyruvylshikimate 3-Phosphate Synthase in E. coli)

  • 김남일;임재윤;조태주
    • 미생물학회지
    • /
    • 제33권1호
    • /
    • pp.1-6
    • /
    • 1997
  • 5-Enolpyruvylshikimate 3-phosphate(EPSP) synthase는 방향족 아미노산을 생합성하는 shikimate phathway의 6번째 효소로 광범위 제초제인 glyphosate의 target enzyme이다. 본 연구에서는, glyphosate에 저해를 받지 않는 EPSP synthase를 개발하고자 하는 연구의 한 단계로서, 우선, EPSP synthase를 대량 발현시킬수 있는 expression vector인 pET-25b를 사용하여 발현시킨 다음, 발현된 효소가 periplasmic space로 transport되는지 또 발현된 단백질이 효소 활성을 가지고 있는지 확인하고자 하였다. 그 결과, pelB leader를 앞에 붙여 발현시킨 EPSP synthase는 periplasmic space로 제대로 transport되며, 단백질 생산 및 periplasmic space로의 수송은 induction 온도에 의해 크게 좌우된다는 것을 관찰하였다. Periplasmic space로 수송되는 EPSP synthase의 양은 $34^{\circ}C$에서 induction시켰을 때 가장 많은 것으로 나타났다. 한편, pET-25b를 이용하여 발현시킨 EPSP synthase는 C-terminal 부위에 HSV-tag, His-tag등 26개 아미노산이 더 있는 상태로 만들어지는데, His-tag은 $Ni^{2+}$-affinity chromatography를 통한 정제에, HSV-tag은 Western blotting을 통한 detection에 각각 이용할 수 있다. 또한, 이와 같이 발현된 recombinant EPSP synthase는 phosphocellulose resin에 결합하였다가 기질인 shikimate 3-phosphate와 phosphoenolpyruvate에 의해 elution되며, glyphosate에 의해 저해되는등 wildtype효소와 같은 효소 특성을 보였다.

  • PDF

Improvement of Glyphosate Resistance through Concurrent Mutations in Three Amino Acids of the Pantoea sp. 5-Enolpyruvylshikimate-3-Phosphate Synthase

  • Liu, Feng;Cao, Yueping
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권8호
    • /
    • pp.1384-1390
    • /
    • 2018
  • Glyphosate inhibits the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) in the shikimate pathway. A mutant of EPSPS from Pantoea sp. was identified using site-directed mutagenesis. The mutant showed significantly improved glyphosate resistance. The mutant had mutations in three amino acids: Gly97 to Ala, Thr 98 to Ile, and Pro 102 to Ser. These mutation sites in Escherichia coli have been studied as significant active sites of glyphosate resistance. However, in our research, they were found to jointly contribute to the improvement of glyphosate tolerance. In addition, the level of glyphosate tolerance in transgenic Arabidopsis confirmed the potentiality of the mutant in breeding glyphosate-resistant plants.