• Title/Summary/Keyword: Shielding structures

Search Result 106, Processing Time 0.024 seconds

Experimental and numerical study on aerodynamic characteristics of suspended monorail trains passing each other under crosswinds

  • Yulong Bao;Wanming Zhai;Chengbiao Cai;Shengyang Zhu;Yongle Li
    • Wind and Structures
    • /
    • v.37 no.5
    • /
    • pp.361-373
    • /
    • 2023
  • Suspended monorail trains (SMTs) are sensitive to crosswinds, and instantaneous aerodynamic characteristics of two SMTs passing each other under crosswinds are particularly complicated. In this study, a pressure measurement test is carried out on stationary train-bridge models arranged in several critical positions. In addition, a validated moving CFD model is developed with the dynamic and sliding mesh method to explore the realistic train movement effects. The time-varying aerodynamic forces and surface pressure distribution on, as well as the flow field around running trains and bridges during trains passing each other, are computed in detail to illustrate the shielding effect of the upstream train. The results reveal that when two trains begin to pass each other, the side force coefficient of the downstream train reduces significantly to negative values due to the wind shielding effect of the upstream train. The moving model successfully captures that airflow is separated on the middle line of the head car for the suspended monorail train, and the surrounding bluff double-beams can significantly affect the flow structures around the train. The wind shielding effect of the upstream train on the downstream train will weaken as the relative yaw angle decreases.

Wind structure and codification

  • Holmes, J.D.;Baker, C.J.;English, E.C.;Choi, E.C.C.
    • Wind and Structures
    • /
    • v.8 no.4
    • /
    • pp.235-250
    • /
    • 2005
  • The paper describes the work of the Working Group on Wind Structure, one of the International Codification Working Groups set up by the International Association of Wind Engineering in 1999. The topics of terrain and exposure, shielding and shelter, topographic effects, tropical cyclone and hurricane wind structure, and thunderstorm wind structure, are described with emphasis on their codification in wind loading codes and standards. Recommendations from the working group are given.

The Application of Fiber-Reinforced Composites to Electromagnetic Wave Shielding Enclosures (섬유강화 복합재료의 전자파 차폐 기구물에 대한 적용에 관한 연구)

  • Park Ki-Yeon;Lee Sang-Eui;Lee Won-Jun;Kim Chun-Gon;Han Jae-Hung
    • Composites Research
    • /
    • v.19 no.3
    • /
    • pp.1-6
    • /
    • 2006
  • As the structures of the high performance electronic equipments and devices recently become more complex, the electromagnetic interference (EMI) and compatibility (EMC) have been very essential for commercial and military purposes. Thus, sensitive electrical devices and densely packed systems need to be protected from electromagnetic wave. In this research, glass fabric/epoxy composites containing conductive multi-walled carbon nanotube (MWNT) and carbon fiber/epoxy composites as electrical shielding materials were fabricated and electrical properties of the composites were measured. The concerning frequency band is from 300 MHz to 1 GHz. The performances of composite shielding enclosures were predicted using electromagnetic wave 3-D simulation tool, CST Microwave Studio. The shielding enclosure made of carbon fiber/epoxy composites were fabricated and the shielding effectiveness (SE) was measured in the anechoic chamber.

Evaluation of RF shielding materials to improve MR image of hybrid PET/MRI

  • Hyun Keong Lim;Yong Choi;Jin Ho Jung;Jiwoong Jung;Changheun Oh;Hyun-wook Park;Jong Guk Kim
    • Journal of the Korean Physical Society
    • /
    • v.80
    • /
    • pp.640-646
    • /
    • 2022
  • Hybrid PET/MRI is a useful imaging system that can improve diagnostic accuracy by providing both functional and anatomical information. However, the combination of PET and MRI can lead to mutual interference, which can degrade the performances of both imaging systems. One of the methods that is capable of preserving the performance of both modalities is to apply RF shielding to PET detectors and electronics. The purpose of this study was to propose a new RF shielding method using Au-plated conductive fabric (PCF) tape that could not only minimize RF interference and eddy current, but that could also be applied to complex PET gantry and detector module structures more easily than thin Cu foils, which have been widely used as a shielding material for hybrid PET/MRI systems. To evaluate the performance of the proposed new RF shielding method, the effects of the two RF shield materials (Cu and Au) on the B1 + field generated by the RF head coil were estimated using a computer simulation method. The effects of the Au PCF tape and Cu foil on the homogeneity and SNR of the MR image were also experimentally evaluated using a commercial 3-T MRI. The uniformity of the B1 + field map was slightly decreased by the use of Cu and Au RF shields. The deterioration in the MR image quality caused by the Au PCF tape was less than that caused by Cu foil. The simulation and experimental results indicate that Au PCF tape can serve as an alternative shielding material that reduces RF interference and eddy current for hybrid PET/MRI systems.

An Experimental Study on the Development of EMP Shielding Concrete Using Electric Furnace Oxidized Slag Aggregate (전기로산화슬래그 골재를 사용한 EMP차폐 콘크리트 개발에 관한 실험적 연구)

  • Min, Tae-Beom;Cho, Hyeong-Kyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.514-520
    • /
    • 2021
  • In this study, EMP shielding performance was evaluated using electric furnace oxidized slag to give EMP shielding performance to concrete among the most used materials in construction sites. As a result of the evaluation, the component of the electric furnace oxidation slag was found to have an Fe2O3 content of 34%, and it was also found to contain an MgO component of about 4.8%. In addition, as a result of conducting an aggregate stability evaluation due to concerns about expansion due to MgO components, it is considered to be suitable for the KS standard. EMP shielding performance evaluation result showed that there was no correlation in EMP shielding performance according to compressive strength, and that general aggregates did not have EMP shielding. However, it was found that the aggregate using the furnace oxidized slag had excellent EMP shielding performance, and the shielding performance improved as the thickness increased. As a result of the durability evaluation, it was found that the EMP shielding concrete has the durability of abortion compared to the general concrete. Through this, it is thought that it will be good to improve the shielding rate if concrete is manufactured using electric furnace oxide slag when constructing EMP shielding structures in the future.

Optimum Design of a Shield Plate to minimize Extremely-Law-Frequency Magnetic Fields produced by Bus Bars (분전반 모선에 의해 발생되는 극저주파 자기장 저감을 위한 차폐판 최적 설계)

  • Jeung, Gi-Woo;Choi, Nak-Sun;Kim, Dong-Hun;Jang, Nak-Won;Lee, Dong-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.57-62
    • /
    • 2009
  • This paper deals with the optimal design of a shield plate in order to minimize Extremely-Low-Frequency(ELF) magnetic fields generated from three-phase bus bars. Combining an evolutionary strategy with a 3D finite element analysis tool, the main dimensions of the shield plate are sought out. The optimization procedure consists of two separated design stages to take into account all foreseen structures of the plate. In the first stage, the basic dimensions of the plate are optimized including the distance between the plate and the bus bars. Then the usefulness of the additional structures such as a slit and fillet is investigated in the second stage. Finally the optimum design of the shield plate is suggested from the viewpoint of the shielding effectiveness and manufacturing cost.

Dynamic analysis of coupled wind-train-bridge system considering tower shielding and triangular wind barriers

  • Zhang, Nan;Ge, Guanghui;Xia, He;Li, Xiaozhen
    • Wind and Structures
    • /
    • v.21 no.3
    • /
    • pp.311-329
    • /
    • 2015
  • A method for analyzing the coupled wind-vehicle-bridge system is proposed that also considers the shielding effect of the bridge tower with triangular wind barriers. The static wind load and the buffeting wind load for both the bridge and the vehicle are included. The shielding effects of the bridge tower and the triangular wind barriers are incorporated by taking the surface integral of the wind load. The inter-history iteration is adopted to solve the vehicle-bridge dynamic equations with time-varying external loads. The results show that after installing the triangular wind barriers in the area of the bridge tower, the bridge response and the vehicle safety factors change slightly. The peak value of the train car body acceleration is significantly reduced when the wind barrier size is increased.

Study on Shielding Theory in relation with Height Restriction under the Military Aviation Law (군용항공기지법상 고도제한의 개선방향 - 차폐이론을 중심으로 -)

  • Ha, Hong-Young;Kim, Hae-Ma-Joong;Hong, Sang-Beam
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.19 no.1
    • /
    • pp.79-107
    • /
    • 2004
  • Shielding theory is to allow the construction of a structure that would be shielded by existing permanent structures even thought such structure extends above the height limits prescribed for such zones. This theory is mentioned as recommended practices in ICAO Annex, and is adopted, with modification, in the current Military Airbase Law, amended in August 26th 2002. However, the Military Airbase Law adopts shielding standard allowing 45 meters uniformly, which is a unique standard compared to other countries shielding guideline. The basic principle in applying the shielding theory is, after considering the circumstances of location of shielded structure, whether such structure has physical effect on aeronautical operations. Based upon the basic principle of shielding theory, the uniform application of shielding standard in the Military Airbase Law would undermine the safety of aeronautical operations. This article is to review subsection 2 of section 8 of the Military Airbase Law, which adopts modified shielding theory, and is to suggest better guideline. From a comparative analysis perspective, shielding guidelines of ICAO and other countries will be discussed. Based upon this discussion, the general problems of shielding theory and the specific problems in the Military Airbase Law will be examined. Finally, this article suggests the case-by-case application of shielding theory, considering circumstances of location, for the purpose of ensuring aviation safety.

  • PDF

Near Infrared Shielding Properties of Quaternary Tungsten Bronze Nanoparticle Na0.11Cs0.22WO3

  • Moon, Kyunghwan;Cho, Jin-Ju;Lee, Ye-Bin;Yoo, Pil J.;Bark, Chung Wung;Park, Juhyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.731-734
    • /
    • 2013
  • Reduced tungsten bronze nanoparticles of ternary and quaternary compounds were prepared by adding sodium and cesium to crystal structures of tungsten trioxides ($Na_xCs_{0.33-x}WO_3$, x = 0, 0.11) while maintaining the overall alkali metal fraction at 0.33, in an attempt to control near infrared (NIR) shielding property in the particular wavelength range of 780 to 1200 nm. The structure and composition analysis of the quaternary compound, $Na_{0.11}Cs_{0.22}WO_3$, revealed that 93.1% of the hexagonal phase was formed, suggesting that both alkali metals were mainly inserted in hexagonal channel. The NIR shielding property for $Na_{0.11}Cs_{0.22}WO_3$ was remarkable, as this material demonstrated efficient transmittance of visible light up to 780 nm and enhancement in NIR shielding because of the blue-shifted absorption maximum in comparison to $Cs_{0.33}WO_3$.

Evaluation for Mechanical Properties of Compress Strength and Dry Density of Concrete at NPP (원전 시설용 콘크리트의 압축강도 및 건조밀도 특성 평가)

  • Lee, Young-Dae;Kim, Gyu-Yong;Shin, Kyoung-Su;Nam, Jeong-Soo;Lee, Tae-Gyu;Choe, Gyeong-Choel
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.53-54
    • /
    • 2011
  • The facilities producing the nuclear energy chosen for resolving the recent global energy problem have been increasingly constructed, and hence more frequent durability tests on radiation shielding concrete are required due to NPP(Nuclear Power Plant) life extension and increase of radioactive waste repositories. Bulk dry density is one of the critical factors ensuring the durability and performance of the radiation shielding concrete because the design of the radiation shielding reinforced concrete structures for NPPs is based on the bulk dry density of the concrete. Bulk density of unconsolidated shielding concrete can be calculated utilizing a test assuring to satisfy the bulk dry density, or existing credible data set. This study evaluated correlation between bulk density and bulk dry density of the concrete used for Korean NPPs (y=1.0913X-0.2458) and developed a correlation expression considering standard deviation of bulk dry density (y=1.0913X-0.3358).

  • PDF