• Title/Summary/Keyword: Shielding 과정

Search Result 54, Processing Time 0.029 seconds

Finite element analysis on bio-mechanical behavior of composite bone plate for healing femur fracture considering contact conditions (접촉조건을 고려한 대퇴골 치료용 복합재료 고정판의 생체 역학적 거동에 관한 유한요소해석)

  • Kim, Suk-Hun;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • In this paper, finite element analyses for estimating the behavior of fractured femur just after the operation were carried out by using ABAQUS 6.71. A stainless steel bone plate and composite bone plates with various stacking angles were considered to find out the effect of bone plate properties on bone fracture healing. In order to simulate the actual state, contact conditions between the plate and bone and fractured bones were imposed on the finite element models and the whole analysis was divided by two steps; screw fastening step and load bearing step. The stress and strain distributions at the fracture site for the cases of the stainless steel and composite bone plates were analyzed and compared with. From the analyses it was found that the composite bone plate had potential advantages for effective bone fractures healing relieving stress shielding effect.

Radioactivation Analysis of Concrete Shielding Wall of Cyclotron Room Using Monte Carlo Simulation (PET 사이클로트론 가동에 따른 콘크리트 차폐벽의 방사화)

  • Jang, Donggun;Lee, Dongyeon;Kim, Junghoon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.335-341
    • /
    • 2017
  • Cyclotron is a device that accelerates positrons or neutrons, and is used as a facility for making radioactive drugs having short half-lives. Such radioactive drugs are used for positron emission tomography (PET), which is a medical apparatus. In order to make radioactive drugs from a cyclotron, a nuclear reaction must occur between accelerated positrons and a target. After the reaction, unncessary neutrons are produced. In the present study, radioactivation generated from the collisions between the concrete shielding wall and the positrons and neutrons produced from the cyclotron is investigated. We tracked radioactivated radioactive isotopes by conducting experiments using FLUKA, a type of Monte Carlo simulation. The properties of the concrete shielding wall were comparatively analyzed using materials containing impurities at ppm level and materials that do not contain impurities. The generated radioactivated nuclear species were comparatively analyzed based on the exposure dose affecting human body as a criterion, through RESRAD-Build. The results of experiments showed that the material containing impurities produced a total of 14 radioactive isotopes, and $^{60}Co$(72.50%), $^{134}Cs$(16.75%), $^{54}Mn$(5.60%), $^{152}Eu$(4.08%), $^{154}Eu$(1.07%) accounted for 99.9% of the total dose according to the analysis having the exposure dose affecting human body as criterion. The $^{60}Co$ nuclear species showed the greatest risk of radiation exposure. The material that did not contain impurities produced a total of five nuclear species. Among the five nuclear species, 54Mn accounted for 99.9% of the exposure dose. There is a possibility that Cobalt can be generated by inducive nuclear reaction of positrons through the radioactivation process of $^{56}Fe$ instead of impurities. However, there was no radioactivation because only few positrons reached the concrete wall. The results of comparative analysis on exposure dose with respect to the presence of impurities indicated that the presence of impurities caused approximately 98% higher exposure dose. From this result, the main cause of radioactivation was identified as the small ppm-level amount of impurities.

3-D Conformal Radiotherapy for CNS Using CT Simulation (입체조준장치를 이용한 중추신경계의 방사선 입체조형치료 계획)

  • 추성실;조광환;이창걸
    • Progress in Medical Physics
    • /
    • v.14 no.2
    • /
    • pp.90-98
    • /
    • 2003
  • Purpose : A new virtual simulation technique for craniospinal irradiation (CSI) that uses a CT-simulator was developed to improve the accuracy of field and shielding placement as well as patient positioning. Materials and Methods : A CT simulator (CT-SIM) and a 3-D conformal radiation treatment planning system (3D-CRT) were used to develop CSI. The head and neck were immobilized with a thermoplastic mask while the rest of the body was immobilized with a Vac-Loc. A volumetric image was then obtained with the CT simulator. In order to improve the reproducibility of the setup, datum lines and points were marked on the head and body. Virtual fluoroscopy was performed with the removal of visual obstacles, such as the treatment table or immobilization devices. After virtual simulation, the treatment isocenters of each field were marked on the body and on the immobilization devices at the conventional simulation room. Each treatment fields was confirmed by comparing the fluoroscopy images with the digitally reconstructed radiography (DRR) and digitally composited radiography (DCR) images from virtual simulation. Port verification films from the first treatment were also compared with the DRR/DCR images for geometric verification. Results : We successfully performed virtual simulations on 11 CSI patients by CT-SIM. It took less than 20 minutes to affix the immobilization devices and to obtain the volumetric images of the entire body. In the absence of the patient, virtual simulation of all fields took 20 min. The DRRs were in agreement with simulation films to within 5 mm. This not only reducee inconveniences to the patients, but also eliminated position-shift variables attendant during the long conventional simulation process. In addition, by obtaining CT volumetric image, critical organs, such as the eyes and the spinal cord, were better defined, and the accuracy of the port designs and shielding was improved. Differences between the DRRs and the portal films were less than 3 m in the vertebral contour. Conclusion : Our analysis showed that CT simulation of craniospinal fields was accurate. In addition, CT simulation reduced the duration of the patient's immobility. During the planning process. This technique can improve accuracy in field placement and shielding by using three-dimensional CT-aided localization of critical and target structures. Overall, it has improved staff efficiency and resource utilization by standard protocol for craniospinal irradiation.

  • PDF

Consideration on Shielding Effect Based on Apron Wearing During Low-dose I-131 Administration (저용량 I-131 투여시 Apron 착용여부에 따른 차폐효과에 대한 고찰)

  • Kim, Ilsu;Kim, Hosin;Ryu, Hyeonggi;Kang, Yeongjik;Park, Suyoung;Kim, Seungchan;Lee, Guiwon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.20 no.1
    • /
    • pp.32-36
    • /
    • 2016
  • Purpose In nuclear medicine examination, $^{131}I$ is widely used in nuclear medicine examination such as diagnosis, treatment, and others of thyroid cancer and other diseases. $^{131}I$ conducts examination and treatment through emission of ${\gamma}$ ray and ${\beta}^-$ ray. Since $^{131}I$ (364 keV) contains more energy compared to $^{99m}Tc$ (140 keV) although it displays high integrated rate and enables quick discharge through kidney, the objective of this study lies in comparing the difference in exposure dose of $^{131}I$ before and after wearing apron when handling $^{131}I$ with focus on 3 elements of external exposure protection that are distance, time, and shield in order to reduce the exposure to technicians in comparison with $^{99m}Tc$ during the handling and administration process. When wearing apron (in general, Pb 0.5 mm), $^{99m}Tc$ presents shield of over 90% but shielding effect of $^{131}I$ is relatively low as it is of high energy and there may be even more exposure due to influence of scattered ray (secondary) and bremsstrahlung in case of high dose. However, there is no special report or guideline for low dose (74 MBq) high energy thus quantitative analysis on exposure dose of technicians will be conducted based on apron wearing during the handling of $^{131}I$. Materials and Methods With patients who visited Department of Nuclear Medicine of our hospital for low dose $^{131}I$ administration for thyroid cancer and diagnosis for 7 months from Jun 2014 to Dec 2014 as its subject, total 6 pieces of TLD was attached to interior and exterior of apron placed on thyroid, chest, and testicle from preparation to administration. Then, radiation exposure dose from $^{131}I$ examination to administration was measured. Total procedure time was set as within 5 min per person including 3 min of explanation, 1 min of distribution, and 1 min of administration. In regards to TLD location selection, chest at which exposure dose is generally measured and thyroid and testicle with high sensitivity were selected. For preparation, 74 MBq of $^{131}I$ shall be distributed with the use of $2m{\ell}$ syringe and then it shall be distributed after making it into dose of $2m{\ell}$ though dilution with normal saline. When distributing $^{131}I$ and administering it to the patient, $100m{\ell}$ of water shall be put into a cup, distributed $^{131}I$ shall be diluted, and then oral administration to patients shall be conducted with the distance of 1m from the patient. The process of withdrawing $2m{\ell}$ syringe and cup used for oral administration was conducted while wearing apron and TLD. Apron and TLD were stored at storage room without influence of radiation exposure and the exposure dose was measured with request to Seoul Radiology Services. Results With the result of monthly accumulated exposure dose of TLD worn inside and outside of apron placed on thyroid, chest, and testicle during low dose $^{131}I$ examination during the research period divided by number of people, statistics processing was conducted with Wilcoxon Signed Rank Test using SPSS Version. 12.0K. As a result, it was revealed that there was no significant difference since all of thyroid (p = 0.345), chest (p = 0.686), and testicle (p = 0.715) were presented to be p > 0.05. Also, when converting the change in total exposure dose during research period into percentage, it was revealed to be -23.5%, -8.3%, and 19.0% for thyroid, chest, and testicle respectively. Conclusion As a result of conducting Wilcoxon Signed Rank Test, it was revealed that there is no statistically significant difference (p > 0.05). Also, in case of calculating shielding rate with accumulate exposure dose during 7 months, it was revealed that there is irregular change in exposure dose for inside and outside of apron. Although the degree of change seems to be high when it is expressed in percentage, it cannot be considered a big change since the unit of accumulated exposure dose is in decimal points. Therefore, regardless of wearing apron during high energy low dose $^{131}I$ administration, placing certain distance and terminating the administration as soon as possible would be of great assistance in reducing the exposure dose. Although this study restricted $^{131}I$ administration time to be within 5 min per person and distance for oral administration to be 1m, there was a shortcoming to acquire accurate result as there was insufficient number of N for statistics and it could be processed only through non-parametric method. Also, exposure dose per person during lose dose $^{131}I$ administration was measured with accumulated exposure dose using TLD rather than through direct-reading exposure dose thus more accurate result could be acquired when measurement is conducted using electronic dosimeter and pocket dosimeter.

  • PDF

An overall wind shielding program for enhancing driving stability (강풍시 도로의 주행안정성을 확보하기 위한 종합적인 방풍대책)

  • Kwon, Soon Duck;Jeong, Un Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.3 s.76
    • /
    • pp.263-270
    • /
    • 2005
  • This paper presents a program for protecting vehicles against side winds on highways. The present study consists of three processes. The first one involves giving a guideline for evaluating driving safety in high winds. The second one involves making a guideline for determining the necessity of wind protection system for a certain road area. A reasonable procedure is suggested based on the probability model of wind data on weather stations and the correction of local topographical conditions. The third one involves design of wind barriers. Both CFD analyses and wind tunnel tests were performed to find the proper type of wind barrier considering vehicle controllability, structural safety, economical efficiency as well as driver's visibility. Performance of the designed wind fences was verified from field tests. The performance of the four different types of wind barrier installed at the elevated bridge were tested and some of the results were provided.

Development of ALARA Checklist for an ALARA Design Review (ALARA 설계검토를 위한 ALARA 점검표 개발)

  • Shin, Sang-Woon;Song, Myung-Jae
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.3
    • /
    • pp.155-166
    • /
    • 1996
  • All nuclear facilities and components should receive an initial ALARA review before the installation and thereafter whenever modifications are planned. A major objective in design aspects of ALARA is to identify areas where specific engineering input can reduce personnel exposure. The basic factors which should be considered in the ALARA design review process include curd control, shielding and isolation of radiation sources accessibility maintainability and reliability, and contamination control. Because many diverse aspects must be considered in the ALARA design reviews, a proper ALARA checklist should be used to aid the designer in preventing any of the ALARA review considerations from being slipped away. In order to develop the practical ALARA checklist, check items for basic ALARA factors have been prepared, and what should be considered in reviewing each item has been discussed here. Based on the proposed factors and items, an ALARA checklist was developed.

  • PDF

Numerical Investigation of Freezing and Thawing Process in Buried Chilled Gas Pipeline (매설 냉각가스관의 동결-융해에 대한 수치해석 연구)

  • Shin, Hosung;Park, Heungrock
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.6
    • /
    • pp.17-26
    • /
    • 2016
  • Characteristic behaviors of geo-structure during freezing and thawing process have to be understood based on fundamental knowledge on phase change in porous soil and interaction between soil and structure. Inversion analysis using published one-dimensional soil freezing tests was conducted to suggest a mechanical model to consider an effect of the ice saturation on Young's modulus. Silty soil was more sensitive to temperature than weathered granite soil and sand, and weathered granite soil was more affected by initial water saturation in stiffness decrease than silty soil. Numerical simulations on chilled gas pipeline showed that shielding effect from surrounding frozen zone around the pipe decreases impact from external load onto the pipe. And a pipe installed in sand backfill showed more heaving due to relatively low stiffness of sand during freezing than that of surrounding in-situ weather granite soil. However, it had more stable stress condition due to effective stress redistribution from external load.

Development of Special Robot Welding Nozzle for the Reduction of CO2 Gas Consumption (CO2 가스 절약형 로봇 용접용 노즐 개발에 관한 연구)

  • Lee, Jongkil
    • 대한공업교육학회지
    • /
    • v.33 no.1
    • /
    • pp.282-296
    • /
    • 2008
  • Present automobile robot welding use $CO_2$ inert gas as a shielding fluid. The inert gas is spreading out and consumable. This present welding mechanism interfered with the welding nozzle. After welding several places have welding defects. Therefore, to reduce the $CO_2$ inert gas and to avoid interference with the material and to increase production modified nozzle which composed of cap and tip are needed. Suggested modified nozzle assembly composed of two stages i.e. $1^{st}$ and $2^{nd}$ stage. At the second stage it has 8 holes which is 3mm of diameter around the circumference. On the base of experimental results the inert $CO_2$ gas discharge reduced to 47% and welding defects decreased also. Modified two stage welding cap can be applied to the present robot welding machine and save the prime cost.

Efficient Data Acquisition Technique for Clinical Application of Multileaf Collimator (다엽콜리메이터의 임상적용을 위한 효율적인 정보 취득 기술)

  • Lee, Jae-Seung;Kim, Jung-Nam
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.11
    • /
    • pp.182-188
    • /
    • 2008
  • The MLC(multi leaf collimator) in charge of important role in radiation therapy field recently have been exchanging from shielding block into it rapidly, owing to being convenient. However, MLC can be occurred the leakage dose of inter_leaves and the error of algorithm in imput and output from digital signal. We compared the difference of imput method to MLC made by Varian Cop. with the error and effective field induced by MLC shaper and film scanner based on XimaVision value as using MLC layer of various shapes. According to comparing standard value with them to basic MLC layer (test1-5), MLC shaper was $0{\sim}0.29cm$, $0.23{\sim}3.59cm^2$ and film scanner was $0{\sim}0.78cm$, $0.24{\sim}3.89cm^2$. At the MLC layer to be applied in clinic, MLC shaper was $0{\sim}0.54cm$, $0.04{\sim}1.68cm^2$ and film scanner was $0{\sim}0.78cm$, $0.24{\sim}3.89cm^2$. The more distance and field from axis of central line increase, the more bigger the error value increases. There is a few mm error from standard point at the process which imput various information to apply MLC in clinic. and effective field did not have variation of monitor unit and dose owing to being a few cm2 error against real field. But there are some problem to shield critical organs because some part of target volume induced by the movement of organs can be not included, therefore we have to pay attention on the process to imput MLC layer

Development of GPS Multipath Error Reduction Method Based on Image Processing in Urban Area (디지털 영상을 활용한 도심지 내 GPS 다중경로오차 경감 방법 개발)

  • Yoon, Sung Joo;Kim, Tae Jung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.2
    • /
    • pp.105-112
    • /
    • 2018
  • To determine the position of receiver, the GPS (Global Positioning System) uses position information of satellites and pseudo ranges based on signals. These are reflected by surrounding structures and multipath errors occur. This paper proposes a method for multipath error reduction using digital images to enhance the accuracy. The goal of the study is to calculate the shielding environment of receiver using image processing and apply it to GPS positioning. The proposed method, firstly, performs a preprocessing to reduce the effect of noise on images. Next, it uses hough transform to detect the outline of building roofs and determines mask angles and permissible azimuth range. Then, it classifies the satellites according to the condition using the image processing results. Finally, base on point positioning, it computes the receiver position by applying a weight model that assigns different weights to the classified satellites. We confirmed that the RMSE (Root Mean Square Error) was reduced by 2.29m in the horizontal direction and by 15.62m in the vertical direction. This paper showed the potential for the hybrid of GPS positioning and image processing technology.