• 제목/요약/키워드: Shield Method

검색결과 432건 처리시간 0.017초

Evaluation of the Usefulness of the Transmittance of Metal Filaments Fabricated by 3D Printers in Radiation Therapy (방사선 치료에서 3D 프린터로 제작된 금속 필라멘트의 투과율에 관한 유용성 평가)

  • Kwon, Kyung-Tae;Jang, Hui-Min;Yoon, Myeong-Seong
    • Journal of the Korean Society of Radiology
    • /
    • 제15권7호
    • /
    • pp.965-973
    • /
    • 2021
  • Since radiation therapy is irradiated with high-energy X-rays in a variety of at least 20 Gy to 80 Gy, a high dose is administered to the local area where the tumor is located, and various side effects of some normal tissues are expected. Currently, in clinical practice, lead, a representative material, is used as an effort to shield normal tissues, but lead is classified as a heavy metal harmful to the human body, and a large amount of skin contact can cause poisoning. Therefore, this study intends to manufacture a measurement sheet that can compensate for the limitations of lead using the materials Tungsten, Brass, and Copper of the 3D printer of the FDM (Fused Deposition Modeling) method and to investigate the penetration performance. Tungsten mixed filament transmission measurement sheet size was 70 × 70 mm and thickness 1, 2, 4 mm using a 3D printer, and a linear accelerator (TrueBeam STx, S/N: 1187) was measured by irradiating 100 MU at SSD 100 cm and 5 cm in water using a water phantom, an ion chamber (FC-65G), and an elcetrometer (PTW UNIDOSE), and the permeability was evaluated. As a result of increasing the measurement sheet of each material by 1 mm, in the case of Tungsten sheet at 3.8 to 3.9 cm in 6 MV, the thickness of the lead shielding body was thinner than 6.5 cm, and in case of Tungsten sheet at 4.5 to 4.6 cm in 15 MV. The sheet was thinner than the existing lead shielding body thickness of 7 cm, and equivalent performance was confirmed. Through this study, the transmittance measurement sheet produced using Tungsten alloy filaments confirmed the possibility of transmission shielding in the high energy region. It has been confirmed that the usability as a substitute is also excellent. It is thought that it can be provided as basic data for the production of shielding agents with 3D printing technology in the future.

Cultivation of Ginseng in Baengnyeongdo, the Northernmost Island of the Yellow Sea in South Korea (서해 최북단 섬 백령도의 인삼 재배 현황)

  • Cho, Dae-Hui
    • Journal of Ginseng Culture
    • /
    • 제4권
    • /
    • pp.128-141
    • /
    • 2022
  • Baengnyeongdo Island, which belongs to Ongjin-gun, Incheon, is an island in the northernmost part of the West Sea in South Korea. Baengnyeong Island is the 15th largest island in Korea and covers an area of 51 km2. The Korea Ginseng Corporation (KGC) investigated the possibility of growing ginseng on Baengnyeong Island in 1996. In 1997, thanks to the support of cultivation costs from Ongjin-gun, the first ginseng seedbed was built on Baengnyeong Island. In 1999, the seedlings were transplanted to a permanent field under a contract with KGC. In 2003, the first six-year-old ginseng harvest was performed, and KGC purchased all production according to the contract. Since then, KGC has signed on to grow ginseng until 2012 and purchased six-year-old ginseng until the fall of 2016. Since 2014, the GimpoPaju Ginseng Agricultural Cooperative Association has signed a ginseng production contract. According to a survey of nine 6-year-old ginseng fields (total 5,961 units) on Baengnyeong Island, the top five with good growth had a survival rate of 42.6 to 68%, and the bottom four with poor growth had an extremely low survival rate of 11.1 to 21.3%. The four fields with low survival rates were where hot peppers were planted before ginseng cultivation. It is believed that the excess nitrogen remaining in the soil due to the treatment of compost or manure during pepper cultivation causes ginseng roots to rot. The average incidence of Alternaria blight was 8.6%. Six six-year-old ginseng gardens were low at 1.1 to 4.7%, while the other three were high at 16.7 to 20.9%. It is assumed that the reason for the low survival rate and high incidence of Alternaria blight is a rain-leaking shield. Farmers used rain-leaking shields because the precipitation on Baengnyeong Island was smaller than on land. One field showed 3% of leaves with yellowish brown spots, a symptom of physiological disturbance of the leaf, which is presumed to be due to the excessive presence of iron in the soil. To increase the production of ginseng on Baengnyeong Island, it is necessary to develop a suitable ginseng cultivation method for the island, such as strengthening the field management based on the results of a scientific study of soil, using rain-resistant shading, and installing drip irrigation facilities. I hope that ginseng will become a new driving force for the development of Baengnyeong Island, allowing ginseng products and food to thrive in the beautiful natural environment of the island.