• Title/Summary/Keyword: Shield

Search Result 1,466, Processing Time 0.04 seconds

An Electric Field analysis of a Vacuum Interrupter by 3 Dimensional Finite Element Method (3차원 유한요소법에 의한 진공 인터럽터의 전계해석)

  • Choi, Seung-Kil;Shim, Jae-Hak;Kang, Hyung-Boo
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.913-915
    • /
    • 1998
  • This paper describes the application of two and three dimensional electric field analysis for vacuum interrupter with spiral contacts. The electric potentials of floating arc shield and electric fields in a vacuum interrupter are analysed at various gap distances from 1mm to 12mm. The electric potentials of floating shield is increased with the gap distance, which is because the relative position of shield is closer to the fixed contact so that the capacitance distribution inside interrupter is varied. The calculated results show that the maximum value of electric field in a vacuum interrupter with floating shield is nearly same to that without shield at short gap distance below 5mm, however at longer gaps more intensive electric field is achieved in interrupter with shield comparing with the model without shield, which is due to the influence of charged floating shield.

  • PDF

The influence that cup-type shield inner vacuum interrupter causes to electric field distribution (Vacuum Interrupter 내부 End_shield가 전계분포에 미치는 영향)

  • Yoon, Jae-Hun;Kim, Byung-Chul;Her, June;Lim, Kee-Jo;Kim, Seong-Hwa
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.478-479
    • /
    • 2008
  • this paper describes the electric field distribution interpretation along a shield form inner vacuum interrupter(VI). The equipotential line and electric field and field vector in a VI are analysed by a finite element method at various shield form. in result, The equipotential line and electric field distribution was affected to VI shield form. The reason is as it gets distortion of equipotential line done. shield of cup type is how to electric field distribution, finally, this paper recognized whether or not affected, and proposed gap with the most suitable shield length and an external insulation.

  • PDF

Drained End Shield Effects on Heat Deposition Rate Distribution in CANDU 6 Reactor End Shield Structure

  • Jin, Yung-Kwon;Kim, Kyo-Youn;Hwang, Hae-Ryong
    • Nuclear Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.570-577
    • /
    • 1994
  • The loss of water in the carbon steel balls and water region of the end shield for CANDU 6 reactor could lead to significant temperature gradient through the end shield structure which amy result in the excessive deformation. With an assumed end shield drained scenario, the heat deposition rates were calculated through the end shield associated with the central fuel channel during full power operation as an initial step to thermal stress analysis. The drained case was compared with that of water present normal case in therms of heat deposition rater and the total heating throughout the end shield regions. The compared results show that the heat deposition and the total heating remain almost the same between the two cases. It was found that the change of volume integrated flux in the end shield regions due to the loss of water contribute a negligible effect on the heat deposition in this region.

  • PDF

Field test and research on shield cutting pile penetrating cement soil single pile composite foundation

  • Ma, Shi-ju;Li, Ming-yu;Guo, Yuan-cheng;Safaei, Babak
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.513-521
    • /
    • 2020
  • In this paper, due to the need for cutting cement-soil group pile composite foundation under the 7-story masonry structure of Zhenghe District and the shield tunnel of Zhengzhou Metro Line 5, a field test was conducted to directly cut cement-soil single pile composite foundation with diameter Ф=500 mm. Research results showed that the load transfer mechanism of composite foundation was not changed before and after shield tunnel cut the pile, and pile body and the soil between piles was still responsible for overburden load. The construction disturbance of shield cutting pile is a complicated mechanical process. The load carried by the original pile body was affected by the disturbance effect of pile cutting construction. Also, the fraction of the load carried by the original pile body was transferred to the soil between the piles and therefore, the bearing capacity of composite foundation was not decreased. Only the fractions of the load carried by pile and the soil between piles were distributed. On-site monitoring results showed that the settlement of pressure-bearing plates produced during shield cutting stage accounted for about 7% of total settlement. After the completion of pile cutting, the settlements of bearing plates generated by shield machine during residual pile composite foundation stage and shield machine tail were far away from residual pile composite foundation stage which accounted for about 15% and 74% of total settlement, respectively. In order to reduce the impact of shield cutting pile construction on the settlement of upper composite foundation, it was recommended to take measures such as optimization of shield construction parameters, radial grouting reinforcement and "clay shock" grouting within the disturbance range of shield cutting pile construction. Before pile cutting, the pile-soil stress ratio n of composite foundation was 2.437. After the shield cut pile is completed, the soil around the lining structure is gradually consolidated and reshaped, and residual pile composite foundation reaches a new state of force balance. This was because the condensation of grouting layer could increase the resistance of remaining pile end and friction resistance of the side of the pile.

The Usefulness Evaluation of Radiation Shielding Devices in PET Scan Procedures (PET 검사 프러시저별 방사선 차폐기구의 유용성 평가)

  • Kim, Yeong-Seon;Seo, Myeong-Deok;Lee, Wan-Kyu;Jeong, Yo-Cheon;Kim, Sang-Wook;Seo, Il-Teak;Song, Jae-Beom
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.65-76
    • /
    • 2010
  • Purpose: he use of PET scanners and the number of patient in Korea have been increased for recent several years dramatically. For this reason, technologists have more possibilities to be exposed to the radiation. The hospitals using PET scanners should make an effort to reduce the radiation exposure dose. The purpose of this study was to evaluate the radiation exposure does when using radiation shielding devices. The evaluation was performed through questionnaire survey and experiment. Materials and Methods: First, the technologists who had experience working in PET center in 2008-2009 were surveyed with questionnaire and TLD Figures, personal opinion of utilization of radiation shielding devices are analyzed. Second, we measured the shielding rate of shielding devices which have been using in PET study procedures. We divided the procedures into four steps; distribution, moving, injection of $^{18}F$-FDG and patient setup. Results: First, the results of this survey, using of L-block+Syringe shield, L-block, Syringe shield, No shield during the injection, were each 58.5%, 20%, 9%, 12.3%. The TLD values according to utilization of radiation shield, using both L-block+Syringe Shield and L-block showed the lower TLD values, and Syringe shield only or No shield showed the higher TLD values. Second, the results of experiments according to PET study procedures measured the shielding rates as follows. The shielding rates during the distribution using L-block, L-block+Apron shield were measured 97.4%, 97.7%. The shielding rates during the $^{18}F$-FDG delivery to the injection room using mobile Syringe shield, Syringe holder, Syringe shield carrier were each 81.7%, 98.9%, 99.7%. The shielding rates during the injection using Syringe shield, L-block, L-block+Syringe shield were measured each 51.9%, 98.3%, 98.7%. The shielding rates of Apron were measured in each 30, 60, 90, 120, 150 cm distance. The measurement were each 16.9%, 14.2%, 16.6%, 17.1%, 18.1%, 18.6%. Conclusion: The most effective method for radiation shielding is to using L-block during the $^{18}F$-FDG distribution and Syringe shield carrier during in moving $^{18}F$-FDG. For the $^{18}F$-FDG injection, L-block+Syringe shield have to be used. The shielding effect of Apron has shown average 16.4%. According to the survey of questionnaire, the operators recognized well risk of the radiation exposure but, tended ignore in working. The radiation dose according to recognition of radiation exposure risk was not relevant. but radiation dose according to utilization of radiation shield lower the more use it. The main reason of no use of shielding devices is cumbersome, 55% of the respondents answered. I'm sure, by use of radiation shield in all PET procedure, radiation exposure will be reduced considerably.

  • PDF

Analysis on Current Distribution of Four-Layer HTSC Power Transmission Cable with a Shield Layer

  • Lim Sung-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.308-312
    • /
    • 2006
  • The inductance difference between conducting layers of high-Tc superconducting (HTSC) power transmission cable causes the current sharing of each conducting layer to be unequal, which decreases the current transmission capacity of HTSC power cable. Therefore, the design for even current sharing in HTSC power transmission cable is required. In this paper, we investigated the current distribution of HTSC power cable with a shield layer dependent on the pitch length and the winding direction of each layer. To analyze the effect of the shield layer on the current sharing of the conducting layers of HTSC power cable, the current distribution of HTSC power cable without a shield layer was compared with the case of HTSC power cable with a shield layer. It could be found through the analysis from the computer simulations that the shield layer of HTSC power cable could be contributed to the improvement of current distribution of conducting layers at the specific pitch length and the winding direction of conducting layer. The result and discussion for the current distribution calculated for HTSC power transmission cable with a shield layer were presented and compared with the cable without a shield layer.

Investigation of Effects of Shield Gas on Counterflow Flame Structure (차폐가스가 대향류 화염구조에 미치는 영향의 조사)

  • Park, Woe-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.2
    • /
    • pp.112-117
    • /
    • 2002
  • The effects of shield gas on the structure of methane-air nonpremixed counterflow flames were numerically investigated. The near extinction flame of a low global strain rate 20 $s^{-1}$ of 19% methane diluted by 81% nitrogen by volume and undiluted air was computed. The flame shape, centerline temperature and axial velocity profiles were compared for different velocity of the shield gas and with and without the shield gas. The effects of the velocity of the shield gas were negligible for $V_{S}/V_{F}{\leq}2$ in normal gravity. Under normal gravity conditions, the flame shape and its position with the shield gas were different from those of the flame without the shield gas, whereas no discernible effects of the shield gas along the centerline were observed in zero gravity.

Design and Construction Problems of Semi-Shield Method (SEMI-SHIELD 공법의 설계 및 시공상 문제점)

  • Kim, Jong-In;Jung, Sung-Nam;Park, Yeong-Geon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1275-1282
    • /
    • 2009
  • The tunnel excavations are used for construction of common utility tunnel, electric tunnel, communication line tunnel, water supply and public sewerage pile line in urban area. The trench cut methods were mainly used in the past, but now, tunneling method is more being used. The tunnel excavation method like as NATM, Messer-Shield, Semi-Shield Methods are being applied to small section tunnel in Korea. The actual construction results of seme-shield method are increasing due to simplified construction process and reduced noise and vibration. And also this method is being used frequently in waterway tunnel and construction of prevention flooding recently. The seme-shield method design guideline is absence except for electric line tunnel construction in Korea, because of the semi-shield method was developed in Europe and Japan. In the prescriptive design, engineer's subjects are tending to intervene, because of absence of standard and specification for details. Therefore, Design and Construction Problems of Semi-Shield Method were described and construction trouble was introduced for exam. These problem and construction troubles have to be examined thoroughly in advance.

  • PDF

A Study on the Design of Compact Polymer Bushing with Inner Control Shield (내부쉴드 구조에 따른 컴팩트한 폴리머 부싱 설계에 관한 연구)

  • Cho, Han-Goo;Yoo, Dae-Hoon;Kang, Hyung-Kyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.5
    • /
    • pp.436-442
    • /
    • 2009
  • This paper describes a study on the design of compact polymer bushing with inner control shield. In the bushing, a high electric stress occurred between field shaper and central conductor by the closely space. Also coaxial cylindrical shield has a great height along the axis to control an electric field. Consequently, all the potentials are raised axially along the field shaper and electric stress is concentrated on a part of the surface of the FRP tube near the upper end of the field shaper. In accordance, the field control can be achieved by means of the designs of such inner control shields. The floating and ring shield designs was decreased electric field concentration at critical parts of the bushing. The shield gaps is formed between field shaper and ring shield. Accordance equipotential lines extend through gaps. As a result, the resulting electrical stress are thus reduced in the range $17{\sim}23%$ in the bushing with floating and ring shield designs. Maxwell 2D simulator based on the boundary element method was also introduced in order to verify the reliability of the polymer bushing. The optimized design uses internal elements for electric stress grading at critical parts of the bushing.

Dynamic and static structure analysis of the Obermeyer gate under overflow conditions

  • Feng, Jinhai;Zhou, Shiyue;Xue, Boxiang;Chen, Diyi;Sun, Guoyong;Li, Huanhuan
    • Computers and Concrete
    • /
    • v.29 no.4
    • /
    • pp.209-217
    • /
    • 2022
  • In order to analyze the static and dynamic structural characteristics of the Obermeyer gate under overflow conditions, the force characteristics and vibration characteristics of the shield plate structure are studied based on the fluid-solid coupling theory. In this paper, the effects of the flow rate, airbag pressure and overflow water level on the structural performance of shield plate of air shield dam are explored through the method of controlling variables. The results show that the maximum equivalent stress and total deformation of the shield plate decrease first and then increase with the flow velocity. In addition, they are positively correlated with the airbag pressure. What's more, we find that the maximum equivalent stress of the shield plate decreases first and then increases with the overflow water level, and the total deformation of the shield plate decreases with the overflow water level. What's more importantly, the natural frequency of the shield structure of the Obermeyer gate is concentrated at 50 Hz and 100 Hz, so there is still the possibility of resonance. Once the resonance occurs, the free edge of the shield vibrates back and forth. This work may provide a theoretical reference for the safe and stable operation of the shield of the Obermeyer gate.