• 제목/요약/키워드: Shell type transformer

검색결과 23건 처리시간 0.026초

발전소용 외철형 765kV 변압기 개발 (Development of 765kV Shell Type Transformers for Generator Step-up)

  • 김영민;김도균;조광제;배용배
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권12호
    • /
    • pp.515-519
    • /
    • 2005
  • We have developed shell type 765kV transformers for generator step-up. Our research and development for shell type 765kV transformers have been continued since 1990. The shell type 765kV transformers of single phase 3MVA for step-up and 500MVA for power transmission were developed in Dec. 1992 and Oct. 1996, respectively. 204MVA 765kV transformer for generator step-up was also developed with the basis of technique and experience to the present. Total 12 phases of 204MVA 765kV transformers will be delivered at Tangjin thermal power plant by 2006. This paper describes electrical and structural features of the shell type 204MVA 765kV transformer.

Yg-Yg 3상 내철형 변압기의 영상분 임피던스 분석 (Zero Sequence Impedance of Yg-Yg Three Phase Core Type Transformer)

  • 조현식;조성우;신창훈;차한주
    • 전기학회논문지
    • /
    • 제65권6호
    • /
    • pp.940-945
    • /
    • 2016
  • In this paper, zero sequence equivalent circuit of Yg-Yg three phase core-type transformer is analyzed. Many problems by iron core structure of the three phase transformer due to asymmetric three phase lines, which includes line disconnection, ground fault, COS OFF, and unbalanced load are reported in the distribution system. To verify a feasibility of zero sequence impedance of Yg-Yg type three phase transformer, fault current generation in the three phase core and shell-type Yg-Yg transformer is compared by PSCAD/EMTDC when single line ground fault is occurred. As a result, shell-type transformer does not affect the flow of fault current, but core-type transformer generate an adverse effect by the zero sequence impedance. The adverse effect is explained by the zero sequence equivalent circuit of core-type transformer and Yg-Yg type three phase core-type transformer supplies a zero sequence fault current to the distribution system.

Zig-Zag 귄선에 의한 내철형 주상변압기 개발에 관한 연구 (A study on the Development of the Shell-type Pole Transformer Using the Zig-Zag Winding)

  • 민윤홍;신대철
    • 조명전기설비학회논문지
    • /
    • 제21권8호
    • /
    • pp.121-128
    • /
    • 2007
  • 본 논문에서는 세계최초로 내철형 주상변압기 코일의 권선을 일반적인 권선방법에서 Zig-Zag(가칭) 권선방법으로 설계 제작하는 방법을 제안하였으며, 또한 바니시 함침공정을 생략하고 단락강도 및 절연내력을 향상시킬 수 있는 내철형 변압기용 권선의 신프레임 구조개발 내용을 제안하였다. 기존의 주상변압기 권선방법에 비하여 전기절연 측면에서 층간 절연지의 사용매수 및 두께를 획기적으로 절감할 수 있는 장점이 있다. 또한 원가절감과 손실저감 및 단락기계력 대처능력이 우수함을 검증하였으며 국내전력회사 배전계통 주상변압기에 유용하게 활용할 수 있다.

비대칭 3상 선로에서 변압기의 철심구조별 문제점 분석 및 방지대책 (Problem Analysis by Iron Core Structure of the Transformer on Asymmetric three Phase lines and Prevention Measures)

  • 신동열;윤동현;차한주
    • 전기학회논문지
    • /
    • 제61권10호
    • /
    • pp.1536-1541
    • /
    • 2012
  • The study analyzed problems by iron core structure of the three phased transformer on asymmetric three phase lines, which included line disconnections, ground faults, COS OFF, and unbalanced loads on the power distribution system. In particular, by analyzing PT combustion cases within the MOF, the study was able to analyze the combustion cause of the core-type transformer and its effect on the system, conduct simulations and practice demonstrations on the characteristics for each iron core structure of the three phase transformer using PSCAD/EMTDC, and suggest measures to prevent the combustion of the core-type transformer.

누설 인덕턴스를 포함한 DAB 컨버터용 고주파 변압기의 머신러닝 활용한 최적 설계 (Machine-Learning Based Optimal Design of A Large-leakage High-frequency Transformer for DAB Converters)

  • 노은총;김길동;이승환
    • 전력전자학회논문지
    • /
    • 제27권6호
    • /
    • pp.507-514
    • /
    • 2022
  • This study proposes an optimal design process for a high-frequency transformer that has a large leakage inductance for dual-active-bridge converters. Notably, conventional design processes have large errors in designing leakage transformers because mathematically modeling the leakage inductance of such transformers is difficult. In this work, the geometric parameters of a shell-type transformer are identified, and finite element analysis(FEA) simulation is performed to determine the magnetization inductance, leakage inductance, and copper loss of various shapes of shell-type transformers. Regression models for magnetization and leakage inductances and copper loss are established using the simulation results and the machine learning technique. In addition, to improve the regression models' performance, the regression models are tuned by adding featured parameters that consider the physical characteristics of the transformer. With the regression models, optimal high-frequency transformer designs and the Pareto front (in terms of volume and loss) are determined using NSGA-II. In the Pareto front, a desirable optimal design is selected and verified by FEA simulation and experimentation. The simulated and measured leakage inductances of the selected design match well, and this result shows the validity of the proposed design process.

Fabrication and Characteristic Tests of a 1 MVA Single Phase HTS Transformer with Concentrically Arranged Windings

  • Kim, S.H.;Kim, W.S.;Choi, K.D.;Joo, H.G.;Hong, G.W.;Han, J.H.;Lee, H.G.;Park, J.H.;Song, H.S.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제6권4호
    • /
    • pp.37-40
    • /
    • 2004
  • A 1 MV A single phase high temperature superconducting (HTS) transformer was manufactured and tested. The rated voltages of primary and secondary of the HTS transformer are 22.9 kV and 6.6 kV respectively. BSCCO-2223 HTS tape was used for HTS windings of 1 MV A HTS transformer. In order to reduce AC loss generated in the HTS winding, the type of concentric arrangement winding was adopted to a 1 MV A HTS transformer. Single HTS tape for primary windings and 4 parallel HTS tapes for secondary windings were used considering the each rated current of the HTS transformer. A core of HTS transformer was fabricated as a shell type core made of laminated silicon steel plate. And a GFRP cryostat with a room temperature bore was also manufactured. The characteristic tests of 1 MV A HTS transformer were performed such as no load test, short circuit test and several insulation tests at 65 K using sub-cooled liquid nitrogen. From the results of tests, the validity of design of HTS transformer was ascertained.

Assembling and Insulation Test of 1MVA Single Phase HTS Transformer for Power Distribution

  • Kim, S. H.;Kim, W. S.;Kim, J. T.;Park, K. D.;H. G. Joo;G. W. Hong;J. H. Han;Lee, S. J.;S. Hahn
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권3호
    • /
    • pp.30-33
    • /
    • 2003
  • 1MVA high temperature superconducting (HTS) transformer with double pancake windings made of BSCCO-2223 HTS tapes was designed and manufactured. And prototype transformer with the same capacity was manufactured also. The each rated voltage of the HTS transformer is 22.9 kV and 6.6 kV. Four parallel BSCCO-2223 HTS tapes were wound in the double pancake windings of low voltage side. In order to distribute the currents equally in each HTS tapes, the three times transposition was performed between the double pancake windings. The windings of prototype transformer were wound using copper tape with the same size as BSCCO-2223 HTS tape. The core of the transformer was designed and manufactured as a shell type core made of laminated silicon steel plate. The several characteristics tests for the prototype transformer were performed in liquid nitrogen and insulation tests were accomplished also.

고온초전도 코일의 모의 전극계에서의 절연연구 (Study on Coil Insulation of HTS Transformer with Simulated Electrode)

  • 정종만;백승명;이정원;곽동순;김상현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.420-423
    • /
    • 2002
  • In this paper the characteristics of surface flashover for high temperature superconducting transformer(HTS) was discussed. The transformer, will be developed in the shell type with double pancake coil, isn't developed yet in the world. We conducted experiment of surface flashover that could occur in the windings of the transformer. First, we distinguished the surface flashover with electrode alignment into two type, such as parallel and vertical, and then compared with each characteristics of surface flashover. And the surface flashover with metallic particle was tested, it was also affected by the particle position. .

  • PDF

초전도 변압기 교류 손실 해석 (Analysis of AC Losses in HIS Transformer with Double Pancake Windings)

  • 김종태;김우석;김성훈;최경달;주형길;홍계원;한진호;이희균
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권1호
    • /
    • pp.17-21
    • /
    • 2005
  • AC loss is one of the important parameters in HTS (High Temperature Superconducting) AC devices. Among the HTS AC power devices, the transformer is the essential part in the electrical power system. But unfortunately, the transformer is the worst HTS device concerning AC loss because of very large magnetization loss due to high magnetic field applied to the HTS wire. We calculated the magnetization losses in HTS pancake windings for transformer according to the operating temperature. Two kinds of arrangement of HTS pancake windings were adopted for calculation of AC losses of a shell type transformer, and the analysis results were presented and discussed.

1MVA 고온초전도 변압기용 더블 팬케이크 권선의 절연시험 (Test of Insulation of Double Pancake Windings for a 1MVA HTS Transformer)

  • 김성훈;김우석;최경달;주형길;홍계원;한진호;한송엽;송희석;박정호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.1015-1017
    • /
    • 2003
  • In a research and development team of high temperature superconducting (HTS) transformer for power distribution, prior to manufacture a single phase 1MVA 22.9 kV/6.6 kV HTS transformer, a 1MVA transformer for insulation test with windings made of copper tapes with the same size as BSCCO-2223 HTS tape was manufactured. The test transformer was composed of both the copper windings of double pancake type and the shell type core of laminated silicon steel plates. The characteristics tests of the test transformer were performed, such as no load test, load test and short test at 77k using liquid nitrogen. Insulation tests, lightning impulse test, power-frequency voltage test and external insulation test, were accomplished also.

  • PDF