• 제목/요약/키워드: Shell mode

검색결과 284건 처리시간 0.025초

구강 내부 온도 계측을 위한 센서 시스템 연구 (A Study on the Temperature Measuring System of an Oral Cavity)

  • 김경호
    • 전기학회논문지
    • /
    • 제56권6호
    • /
    • pp.1165-1169
    • /
    • 2007
  • In this study, a novel sensor system for measuring the temperature inside an oral cavity is proposed. With this aim, a small size of thermistor was used for resolving the cavity's temperature with the resolution of $0.1^{\circ}C$. To evaluate effectiveness of our sensor system, the temperature and its output voltage characteristic, and the specifications of response are investigated. It turned out to be that our sensor system has a linear property in terms of temperature variations for a healthy subject's body temperature range and has a good response time within 3 seconds. Also, in order to investigate the medical application, our sensor system is sought to measure the real temperature variations of a subject's oral cavity and ark shell especially for 'before' and 'after' exercise mode.

Comparison of alternative algorithms for buckling analysis of slender steel structures

  • Dimopoulos, C.A.;Gantes, C.J.
    • Structural Engineering and Mechanics
    • /
    • 제44권2호
    • /
    • pp.219-238
    • /
    • 2012
  • Objective of this paper is to compare linear buckling analysis formulations, available in commercial finite element programs. Modern steel design codes, including Eurocode 3, make abundant use of linear buckling loads for calculation of slenderness, and of linear buckling modes, used as shapes of imperfections for nonlinear analyses. Experience has shown that the buckling mode shapes and the magnitude of buckling loads may differ, sometimes significantly, from one algorithm to another. Thus, three characteristic examples have been used in order to assess the linear buckling formulations available in the finite element programs ADINA and ABAQUS. Useful conclusions are drawn for selecting the appropriate algorithm and the proper reference load in order to obtain either the classical linear buckling load or a good approximation of the actual geometrically nonlinear buckling load.

스마트 Hull 구조물의 모달 해석 및 진동 제어 (Modal Analysis and Vibration Control of Smart Hull Structure)

  • 손정우;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.299-304
    • /
    • 2008
  • Dynamic characteristics of smart hull structure are investigated and active vibration control performance is evaluated. Dynamic model of smart hull structure with surface bonded Macro-fiber Composite (MFC) actuators is established by analytical method. Equations of motion of the host hull structure are derived based on Donnell-Mushtari equilibrium equations for a thin cylindrical shell. A general model for the interaction between hull structure and MFC actuator is included in the dynamic model. Modal analysis is then conducted and mode shapes and corresponding natural frequencies are investigated. After constructing of the optimal control algorithm, active vibration control performance of the proposed system is evaluated. It has been shown that structural vibration can be reduced effectively with proper control input.

  • PDF

스마트 Hull 구조물의 모달 해석 및 진동 제어 (Modal Analysis and Vibration Control of Smart Hull Structure)

  • 손정우;최승복
    • 한국소음진동공학회논문집
    • /
    • 제18권8호
    • /
    • pp.832-840
    • /
    • 2008
  • Dynamic characteristics of smart hull structure are investigated and active vibration control performance is evaluated. Dynamic model of smart hull structure with surface bonded macro-fiber composite(MFC) actuators is established by analytical method. Equations of motion of the host hull structure are derived based on Donnell-Mushtari equilibrium equations for a thin cylindrical shell. A general model for the interaction between hull structure and MFC actuator is included in the dynamic model. Modal analysis is then conducted and mode shapes and corresponding natural frequencies are investigated. After constructing of the optimal control algorithm, active vibration control performance of the proposed system is evaluated. It has been shown that structural vibration can be reduced effectively with proper control input.

Dynamic analysis of immersion concrete pipes in water subjected to earthquake load using mathematical methods

  • Haghighi, Mohammad Salkhordeh;Keikha, Reza;Heidari, Ali
    • Earthquakes and Structures
    • /
    • 제15권4호
    • /
    • pp.361-367
    • /
    • 2018
  • In this paper, dynamic analysis of concrete pipe submerged in the fluid and conveying fluid is studied subjected to earthquake load. The structure is modeled by classical shell theory and the force induced by internal fluid is obtained by Navier-Stokes equation. Applying energy method and Hamilton's principle, the motion equations are derived. Based on Navier and Newmark methods, the dynamic deflection of the structure is calculated. The effects of different parameters such as mode number, thickness to radius ratios, length to radius ratios, internal and external fluid are discussed on the seismic response of the structure. The results show that considering internal and external fluid, the dynamic deflection increases.

성덕대왕신종의 등가 종과 맥놀이 주기 조절 (An Equivalent Bell and Beat Period Control in the Sacred Bell of the Great King Seongdeok)

  • 이중혁,;김석현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.472-475
    • /
    • 2013
  • This study proposes an equivalent bell model for the Sacred Bell of the Great King Seongdeok An equivalent bell model bas the modal property of the real bell and it consists of an axi-symmetric bell body and a point mass, The bell model is constructed by the finite element analysis based upon the theory of a revolutionary shell. Using the equivalent bell model. the beat period can be controlled by decreasing the thickness of local area. This study aims at showing a beat period control method for a large bell having the similar size to the Sacred Bell of the Great King Seongdeok.

  • PDF

승용차용 HVAC Case의 동특성 해석 (Dynamic Analysis of HVAC Case for Passenger Car)

  • 육지용;차용길;임정수;김광일;강성호
    • 한국소음진동공학회논문집
    • /
    • 제19권1호
    • /
    • pp.101-108
    • /
    • 2009
  • This paper presents dynamic analysis of HVAC(heating ventilation & air conditioning) heater case which consists of heater and evaporator unit for passenger car. To analyze the dynamic characteristics of HVAC heater case, finite element model which consists of shell elements is constructed for modal analysis and experimental modal analysis has been conducted. Finite element analysis results are compared with experimental results to evaluate of validity of finite element model. After identifying mode shape and natural frequency of HVAC heater case, local stiffness of HVAC case is evaluated through point mobility using finite element analysis and experiment.

Free vibration analysis of functionally graded cylindrical nanoshells resting on Pasternak foundation based on two-dimensional analysis

  • Arefi, Mohammad;Zur, Krzysztof Kamil
    • Steel and Composite Structures
    • /
    • 제34권4호
    • /
    • pp.615-623
    • /
    • 2020
  • In this paper, free vibration analysis of a functionally graded cylindrical nanoshell resting on Pasternak foundation is presented based on the nonlocal elasticity theory. A two-dimensional formulation along the axial and radial directions is presented based on the first-order shear deformation shell theory. Hamilton's principle is employed for derivation of the governing equations of motion. The solution to formulated boundary value problem is obtained based on a harmonic solution and trigonometric functions for various boundary conditions. The numerical results show influence of significant parameters such as small scale parameter, stiffness of Pasternak foundation, mode number, various boundary conditions, and selected dimensionless geometric parameters on natural frequencies of nanoshell.

한국형 원전 격납건물의 비선형해석에 관한 연구 (A Study on the Nonlinear Analysis of Containment Building in Korea Standard Nuclear Power Plant)

  • 이홍표;전영선
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.694-697
    • /
    • 2007
  • In this paper, a nonlinear finite element analysis program NUCAS, which has been developed for assessment of pressure capacity and failure mode for nuclear containment building is described. Degenerated shell element with assumed strain method and low-order solid element with enhanced assumed strain method is adapted to microscopic material and elasto-plastic material model, respectively. Finally, the performance of the developed program is tested and demonstrated with several examples. From the numerical tests, the present results show a good agreement with experimental data or other numerical results.

  • PDF

엘보우 시편에서의 재료 경화 거동 모델에 따른 최적의 유한 요소 선정 (Selection of the Optimal Finite Element Type by Material Hardening Behavior Model in Elbow Specimen)

  • 허은주;권형도
    • 한국압력기기공학회 논문집
    • /
    • 제13권1호
    • /
    • pp.84-91
    • /
    • 2017
  • This paper is proposed to select the optimal finite element type in finite element analysis. Based on the NUREG reports, static analyses were performed using a commercial analysis program, $ABAQUS^{TM}$. In this study, we used a nonlinear kinematic hardening model proposed by Chaboche. The analysis result of solid elements by inputting the same material constants was different from the results of the NUREG report. This is resulted from the difference between shell element and solid element. Therefore, the material constants that have similar result to the experimental result were determined and compared according to element type. In case of using solid element for efficient finite element analysis, we confirmed that the use of C3D8I element type(incompatible mode 8-node linear brick element) leads the accurate result while reducing the analysis time.