• 제목/요약/키워드: Shell buckling

검색결과 323건 처리시간 0.023초

Hybrid 구조물의 비선형 불안정 거동에 관한 연구(II) -STEP 하중에서의 동적 면내비틀림 좌굴 특성- (A Study on the Nonlinear Instability Behavior of Hybrid Structures(II) -Characteristic of Dynamic In-Plane Torsional Buckling under the STEP Load-)

  • 김승덕;김형석;강문명
    • 한국강구조학회 논문집
    • /
    • 제13권5호
    • /
    • pp.599-608
    • /
    • 2001
  • STEP 하중을 받고 있는 쉘형 구조물의 동적 불안정 문제를 다룬 연구 결과는 다소 발표되고 있으나 Hybrid 케이블 돔의 동적 불안정 문제를 다룬 연구는 아직 없는 실정이다. 또 카오스의 생성을 파악하기 위하여 위상면을 이용하여 동적 좌굴의 기본적 현상을 다룬 연구도 거의 없다. 본 연구에서는 기하학적 비선형을 고려한 Hybrid 케이블 돔의 간접좌굴을 수치적 기법으로 조사하고 이를 정적 임계하중과 비교하였다. 동적 좌굴하중은 비선형 운동방정식을 수치분석하여 결정하고 위상면을 이용하여 간접좌굴 현상을 규명한다.

  • PDF

Estimation of Buckling and Ultimate Collapse Behaviour of Stiffened Curved Plates under Compressive Load

  • Park, Joo-Shin;Ha, Yeon-Chul;Seo, Jung-Kwan
    • 한국해양공학회지
    • /
    • 제34권1호
    • /
    • pp.37-45
    • /
    • 2020
  • Unstiffened and stiffened cylindrically curved plates are often used in ship structures. For example, they can be found on a deck with a camber, a side shell at the fore and aft parts, and the circular bilge part of a ship structure. It is believed that such cylindrically curved plates can be fundamentally modelled using a portion of a circular cylinder. From estimations using cylindrically curved plate models, it is known that the curvature generally increases the buckling strength compared to a flat plate under axial compression. The existence of curvature is also expected to increase both the ultimate and buckling strengths. In the present study, a series of finite element analyses were conducted on stiffened curved plates with several varying parameters such as the curvature, panel slenderness ratio, and web height and type of stiffener applied. The results of numerical calculations on stiffened and unstiffened curved plates were examined to clarify the influences of such parameters on the characteristics of their buckling/plastic collapse behavior and strength under an axial compression.

단면감소를 고려한 파이프의 좌굴에 관한 연구 (Buckling Analysis of Pipelines with Reduced Cross Section)

  • 최동호;고영찬;권순길;이종선
    • 대한토목학회논문집
    • /
    • 제33권3호
    • /
    • pp.865-873
    • /
    • 2013
  • 본 연구에서는 부식이나 보강재가 고려된 비균일한 두께를 가지는 파이프라인에 대하여 일정한 외압을 받을 때의 탄성 좌굴하중을 이론적으로 산정하였다. 길이가 매우 긴 원통형 쉘 구조물인 파이프라인을 단순한 링 구조물로 가정하였고, 고유함수를 유도하여 좌굴 임계하중을 산정하였다. 또한, 두께 변화와 두께가 감소된 구간의 범위에 따른 변수해석을 수행하였다. 이론식에 의해 산정된 좌굴 임계하중 결과를 유한요소해석 결과와 비교하여 검증하였고, 두 결과는 잘 일치함을 알 수 있었다.

Comparative study of finite element analysis and generalized beam theory in prediction of lateral torsional buckling

  • Sharma, Shashi Kant;Kumar, K.V. Praveen;Akbar, M. Abdul;Rambabu, Dadi
    • Advances in materials Research
    • /
    • 제11권1호
    • /
    • pp.59-73
    • /
    • 2022
  • In the construction industry, thin-walled frame elements with very slender open cross-sections and low torsional stiffness are often subjected to a complex loading condition where axial, bending, shear and torsional stresses are present simultaneously. Hence, these often fail in instability even before the yield capacity is reached. One of the most common instability conditions associated with thin-walled structures is Lateral Torsional Buckling (LTB). In this study, a first order Generalized Beam Theory (GBT) formulation and numerical analysis of cold-formed steel lipped channel beams (C80×40×10×1, C90×40×10×1, C100×40×10×1, C80×40×10×1.6, C90×40×10×1.6 and C100×40×10×1.6) subjected to uniform moment is carried out to predict pure Lateral Torsional Buckling (LTB). These results are compared with the Finite Element Analysis of the beams modelled with shell elements using ABAQUS and analytical results based on Euler's buckling formula. The mode wise deformed shape and modal participation factors are obtained for comparison of the responses along with the effect of varying the length of the beam from 2.5 m to 10 m. The deformed shapes of the beam for different modes and GBTUL plots are analyzed for comparative conclusions.

Resonance frequency and stability of composite micro/nanoshell via deep neural network trained by adaptive momentum-based approach

  • Yan, Yunrui
    • Geomechanics and Engineering
    • /
    • 제28권5호
    • /
    • pp.477-491
    • /
    • 2022
  • In the present study, the effects of thermal loading on the buckling and resonance frequency of graphene platelets (GPL) reinforced nano-composites are examined. Functionally graded (FG) material properties are considered in thickness direction for the thermal responses of the composite. The equivalent material properties are obtained using Halphin-Tsai nano-mechanical model for composite layers. Moreover, the effects of nano-scale sizes are taken into account, employing functionally modified couple stress (FMCS) parameter. In this regard, for the first time, it is demonstrated that at certain values of GPL weight fraction, thermal buckling occurs. In obtaining results of vibrational behavior, both analytical solution and deep neural network (DNN) methods are used. The DNN method needs low computational costs to predict the resonance behavior. A comprehensive parametric study is conducted to indicate the effects of several geometrical, material, and loading conditions on the vibrational and buckling behavior of cylindrical shell structures made of GPL-nanocomposites. It is shown that the effect of temperature change on the occurrence of buckling is vital while it has a negligible impact on the resonance frequency of the structure. Moreover, the size-dependency of the results is demonstrated, and it cannot be neglected in nano-scales.

Post buckling mechanics and strength of cold-formed steel columns exhibiting Local-Distortional interaction mode failure

  • Muthuraj, Hareesh;Sekar, S.K.;Mahendran, Mahen;Deepak, O.P.
    • Structural Engineering and Mechanics
    • /
    • 제64권5호
    • /
    • pp.621-640
    • /
    • 2017
  • This paper reports the numerical investigation conducted to study the influence of Local-Distortional (L-D) interaction mode buckling on post buckling strength erosion in fixed ended lipped channel cold formed steel columns. This investigation comprises of 81 column sections with various geometries and yield stresses that are carefully chosen to cover wide range of strength related parametric ratios like (i) distortional to local critical buckling stress ratio ($0.91{\leq}F_{CRD}/F_{CRL}{\leq}4.05$) (ii) non dimensional local slenderness ratio ($0.88{\leq}{\lambda}_L{\leq}3.54$) (iii) non-dimensional distortional slenderness ratio ($0.68{\leq}{\lambda}_D{\leq}3.23$) and (iv) yield to non-critical buckling stress ratio (0.45 to 10.4). The numerical investigation is carried out by conducting linear and non-linear shell finite element analysis (SFEA) using ABAQUS software. The non-linear SFEA includes both geometry and material non-linearity. The numerical results obtained are deeply analysed to understand the post buckling mechanics, failure modes and ultimate strength that are influenced by L-D interaction with respect to strength related parametric ratios. The ultimate strength data obtained from numerical analysis are compared with (i) the experimental tests data concerning L-D interaction mode buckling reported by other researchers (ii) column strength predicted by Direct Strength Method (DSM) column strength curves for local and distortional buckling specified in AISI S-100 (iii) strength predicted by available DSM based approaches that includes L-D interaction mode failure. The role of flange width to web depth ratio on post buckling strength erosion is reported. Then the paper concludes with merits and limitations of codified DSM and available DSM based approaches on accurate failure strength prediction.

실험적/수치적 방법이 혼합된 VCT를 활용한 내부 압력을 받는 원통형 쉘의 좌굴 하중 예측 (The Estimation of Buckling Load of Pressurized Unstiffened Cylindrical Shell Using the Hybrid Vibration Correlation Technique Based on the Experimental and Numerical Approach)

  • 이미연;전민혁;조현준;김연주;김인걸;박재상
    • 한국항공우주학회지
    • /
    • 제50권10호
    • /
    • pp.701-708
    • /
    • 2022
  • 압축력을 받는 발사체의 추진제 탱크 구조는 좌굴에 의한 파손이 발생할 위험이 크다. 탱크 구조와 같이 두께가 얇고 반지름이 큰 대형 경량 구조물은 제작 과정이 어렵고 복잡하므로 시험 후 사용을 위해 비파괴적 시험법을 이용한 좌굴 하중 예측이 요구된다. 압축 하중-고유 진동수와의 관계를 이용하여 좌굴 하중을 예측하는 Vibration Correlation Technique(VCT)에 관한 많은 연구가 수행되었으나 좌굴 하중을 정확히 예측하기 위하여 큰 압축 하중을 필요로 하는 시험이 요구되었고 구조물의 내부 압력이 증가됨에 따라 예측 정확도가 현저히 떨어지는 경향을 보였다. 본 논문에서는 내압 증가에 따라 예측 정확도가 저하되는 경향과 원인을 분석하고 유한요소해석 결과와 압축 시험 결과를 혼합한 VCT를 제안하여 시험 후 추진제 탱크의 사용이 가능할 정도의 낮은 압축 하중 시험 값에서도 좌굴 하중 예측 정확도를 증대시킬 수 있는 방법을 제안하였다. 제안된 방법에 의한 좌굴 예측값은 실제 좌굴 시험 값과 매우 잘 일치하였다.

Optimal flammability and thermal buckling resistance of eco-friendly abaca fiber/ polypropylene/egg shell powder/halloysite nanotubes composites

  • Saeed Kamarian;Reza Barbaz-Isfahani;Thanh Mai Nguyen Tran;Jung-Il Song
    • Advances in nano research
    • /
    • 제16권2호
    • /
    • pp.127-140
    • /
    • 2024
  • Upon direct/indirect exposure to flame or heat, composite structures may burn or thermally buckle. This issue becomes more important in the natural fiber-based composite structures with higher flammability and lower mechanical properties. The main goal of the present study was to obtain an optimal eco-friendly composite system with low flammability and high thermal buckling resistance. The studied composite consisted of polypropylene (PP) and short abaca fiber (AF) with eggshell powder (ESP) and halloysite clay nanotubes (HNTs) additives. An optimal base composite, consisting of 30 wt.% AF and 70 wt.% PP, abbreviated as OAP, was initially introduced based on burning rate (BR) and the Young's modulus determined by horizontal burning test (HBT) and tensile test, respectively. The effects of adding ESP to the base composite were then investigated with the same experimental tests. The results indicated that though the BR significantly decreased with the increase of ESP content up to 6 wt.%, it had a very destructive influence on the stiffness of the composite. To compensate for the damaging effect of ESP, small amount of HNT was used. The performance of OAP composite with 6 wt.% ESP and 3 wt.% HNT (OAPEH) was explored by conducting HBT, cone calorimeter test (CCT) and tensile test. The experimental results indicated a 9~23 % reduction in almost all flammability parameters such as heat release rate (HRR), total heat released (THR), maximum average rate of heat emission (MARHE), total smoke released (TSR), total smoke production (TSP), and mass loss (ML) during combustion. Furthermore, the combination of 6 wt.% ESP and 3 wt.% HNT reduced the stiffness of OAP to an insignificant amount by maximum 3%. Moreover, the char residue analysis revealed the distinct differences in the formation of char between AF/PP and AF/PP/ESP/HNT composites. Afterward, dilatometry test was carried out to examine the coefficient of thermal expansion (CTE) of OAP and OAPEH samples. The obtained results showed that the CTE of OAPEH composite was about 18% less than that of OAP. Finally, a theoretical model was used based on first-order shear deformation theory (FSDT) to predict the critical bucking temperatures of the OAP and OAPEH composite plates. It was shown that in the absence of mechanical load, the critical buckling temperatures of OAPEH composite plates were higher than those of OAP composites, such that the difference between the buckling temperatures increased with the increase of thickness. On the contrary, the positive effect of CTE reduction on the buckling temperature decreased by raising the axial compressive mechanical load on the composite plates which can be assigned to the reduction of stiffness after the incorporation of ESP. The results of present study generally stated that a suitable combination of AF, PP, ESP, and HNT can result in a relatively optimal and environmentally friendly composite with proper flame and thermal buckling resistance with no significant decline in the stiffness.

균일외압을 받는 링보강 원형단면 강재 쉘의 강도특성 (Resisting Strength of Ring-Stiffened Cylindrical Steel Shell under Uniform External Pressure)

  • 안준태;신동구
    • 한국강구조학회 논문집
    • /
    • 제30권1호
    • /
    • pp.25-35
    • /
    • 2018
  • 균일 외압을 받는 링 보강 원형단면 강재 쉘에 대하여 재료 및 기하학적 비선형 유한요소법(GMNIA)을 적용하여 외압강도를 평가하였다. 링 보강 쉘의 기하학적 초기결함의 진폭, 반경 대 두께 비, 링 보강재 간격 대 반경비 등이 외압강도에 미치는 영향을 분석하였으며, Eurocode 3과 DNV 설계기준에 의한 설계 외압 강도와 유한 요소해석으로 구한 외압강도를 비교 평가하였다. 기하학적 초기결함의 형상은 선형탄성 좌굴해석에 의한 좌굴모드를 적용하였으며 보강 쉘의 반경 대 두께 비는 250~500범위를 고려하였다.

Effects of imperfection shapes on buckling of conical shells under compression

  • Shakouri, Meisam;Spagnoli, Andrea;Kouchakzadeh, M.A.
    • Structural Engineering and Mechanics
    • /
    • 제60권3호
    • /
    • pp.365-386
    • /
    • 2016
  • This paper describes a systematic numerical investigation into the nonlinear elastic behavior of conical shells, with various types of initial imperfections, subject to a uniformly distributed axial compression. Three different patterns of imperfections, including first axisymmetric linear bifurcation mode, first non-axisymmetric linear bifurcation mode, and weld depression are studied using geometrically nonlinear finite element analysis. Effects of each imperfection shape and tapering angle on imperfection sensitivity curves are investigated and the lower bound curve is determined. Finally, an empirical lower bound relation is proposed for hand calculation in the buckling design of conical shells.