• Title/Summary/Keyword: Shell and Tube

Search Result 224, Processing Time 0.024 seconds

The Study on Performance Characteristics due to the Degree of Superheat in Freon Refrigerating System (The Comparison of Heat Exchanger Types) (프레온 냉동장치의 과열도에 관한 성능 특성 연구 (열교환기 타입별 비교))

  • Jeong, Song-Tae;Ha, Kyeong-Soo;Kim, Yang-Hyun;Park, Chan-Soo;Ha, Ok-Nam;Lee, Seung-Jae
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.486-491
    • /
    • 2005
  • Nowadays heat exchangers that have been applied for freon refrigerating systems, a shell and tube type condenser, but because of their large size, large space for installation and more amount of refrigerants are needed. Therefore, in this study, we will find the most suitable operating condition through the comparison of performance between the shell & tube type and shell & disk type heat exchanger with R22. The experiments are carried out for the condensing pressure of refrigeration system from 1500kPa to 1600kPa and for the degree of superheat from 0 to $1^{\circ}C$ at each condensing pressure. As a result of experiment, if the shell & disk type heat exchanger is applied for R22 refrigerating systems, minimized input of refrigerants and space required for installation will be secured, which will have a great contribute to financial improvement for industry.

  • PDF

Enhancement of Performance of Shell and Tube Heat Exchanger Using Pertinent Leakage Flow Between Baffle and Tube Bundles (배플과 관군간의 적정 누설유동을 이용한 쉘-관 열교환기의 성능향상)

  • Nguyen, Van Hap;Lee, Geun Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.3
    • /
    • pp.223-229
    • /
    • 2015
  • In this study, the effects of the leakage flow between the baffle and tube bundles on the performance of a shell and tube heat exchanger (STHE) were examined using the commercial software ANSYS FLUENT v.14. A computational fluid dynamics model was developed for a small STHE with five different cases for the ratio of the leakage cross-sectional area to the baffle cross-sectional area, ranging from 0 to 40%, in order to determine the optimum leakage flow corresponding to the maximum outlet temperature. Using fixed tube wall and inlet temperatures for the shell side of the STHE, the flow and temperature fields were calculated by increasing the Reynolds number from 4952 to 14858. The present results showed that the outlet temperature, pressure drop, and heat transfer coefficient were strongly affected by the leakage flow, as well as the Reynolds number. In contrast with a previous researcher's finding that the leakage flow led to simultaneous decreases in the pressure drop and heat transfer rate, the present study found that the pertinent leakage flow provided momentum in the recirculation zone near the baffle plate and thus led to the maximum outlet temperature, a small pressure drop, and the highest heat transfer rate. The optimum leakage flow was shown in the case with a ratio of 20% among the five different cases.

Study on velocity profiles around spiral baffle plates in a horizontal circular tube without inner tubes

  • Chang, Tae-Hyun;Lee, Kwon-Soo;Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.5
    • /
    • pp.403-411
    • /
    • 2016
  • Usually shell and tube heat exchangers are employed to recover energy between fluids. Recently, numerous papers on these heat exchangers have been published; however, the velocity and temperature profiles or comparison of the features of the flow with or without inside tubes have rarely been described. In this research, experimental and numerical studies were carried out to investigate the characteristics of the flow around the spiral baffle plates without inside tubes in a horizontal circular tube using a particle image velocimetry method and ANSYS 14.0~15.0 version (Fluent). The results showed that swirling flow was produced between the spiral baffle plates. The tangential components were strong between the two spiral baffles; however, the axial or radial velocities components were indicating nearly zero. From the spiral motion in the space of the two baffles, it is considered that there were no dead zones between the spiral baffle.

Structural design concept of the forced-draft sodium-to-air heat exchanger in the decay heat removal system of PGSFR (소듐냉각고속로 잔열제거계통 강제대류 소듐-공기 열교환기의 구조개념 설계)

  • Kim, Nak Hyun;Lee, Sa Yong;Kim, Sung Kyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.78-84
    • /
    • 2016
  • The FHX (Forced-draft sodium-to-air Heat Exchanger) employed in the ADHRS (active decay heat removal system) is a shell-and-tube type counter-current flow heat exchanger with M-shape finned-tube arrangement. Liquid sodium flows inside the heat transfer tubes and atmospheric air flows over the finned tubes. The unit is placed in the upper region of the reactor building and has function of dumping the system heat load into the final heat sink, i.e., the atmosphere. Heat is transmitted from the primary cold sodium pool into the ADHRS sodium loop via DHX (decay heat exchanger), and a direct heat exchange occurs between the tube-side sodium and the shell-side air through the FHX tube wall. This paper describes the DHRS and the structural design of the FHX.

Impingement wastage experiment with SUS 316 in a printed circuit steam generator

  • Siwon Seo;Bowon Hwang;Sangji Kim;Jaeyoung Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.257-264
    • /
    • 2024
  • The sodium cooled fast reactor (SFR) is one of the Gen-IV reactors with the most operating experience accumulated. Although the technology level is the most mature among the Gen-IV reactors, there is still a safety problem that has not been solved, which is the sodium-water reaction. Since sodium and water are separated only by a heat transfer tube with a thickness of only a few mm, there is inherently a risk of a sodium-water reaction (SWR) accident in the SFR. In this study, it is attempted to quantitatively evaluate the resistance of SWR accidents by replacing the shell and tube steam generator with printed circuit steam generator (PCSG) as a method to mitigate the SWR accident. To do this, a CATS-S (Compact Accident Tolerance Steam Generator-SWR) facility was designed and built. And for the quantitative evaluation of accident resistance, a methodology for measuring the impingement wastage rate was established. As a result of this research, the impingement wastage rate caused by SWR generated in a PCSG was measured first time. It was confirmed that the impingement wastage phenomenon was suppressed in the PCSG, and the accident resistance was higher than that of the SWR through comparison with the experimental results performed in the existing shell and tube steam generator. In conclusion, a PCSG is more resistant to impingement wastage as a result of the SWR accident than existing shell and tube steam generators, and it is estimated that a PCSG can mitigate SWR accidents, an inherent problem of SFR.

An Experimental Study of Ice-Making Performance on the Ice Storage System using Spiral Tube (관외착빙형 빙축열조의 제빙성능에 관한 연구)

  • Park, Yong-Joo;Yim, Kwang-Bin;Cho, Nam-Cheol
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.1
    • /
    • pp.47-52
    • /
    • 2004
  • An experimental investigation was performed to compare ice making characteristics of ice storage system with smooth and spiral tube. During the freezing processes in the shell and tube type ice storage tank with smooth tube, heat resistance of the ice layer caused a decrease in freezing rate. Also, the phenomena of bridging made the increasing rate of ice making less. In order to improve the ice making rate, spiral tube(pitch=6mm) was used in the present study. The ice making rate and the decreasing of bridging for the spiral tube were higher than those for the smooth tube.

A Study of th Optimum of closed ${CO}_{2}$ Gas Turbine Process for Nuclear Energy Power Plant(II) - For Optimal Design of Heat Exchanger- (원자력 발전소에 대한 밀폐 ${CO}_{2}$ 가스터빈 프로세스의 최적화 연구 (II) -열교환기의 설계에 관하여 -)

  • 이찬규;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.251-258
    • /
    • 1990
  • Optimal design of heat exchanger for closed CO$_{2}$ gas turbine plant of three processes selected from the result of cycle analysis have been discussed previously paper(I) has been carried out under specified inlet and outlet conditions. Independent variables such as number of parallel connection, tube diameter, shell side and tube side pressure loss as well as dependent variables such as shell diameter, number of tubes, number of serial connections were all characterized according to the standardization or so. Search method was used to construct a computer simulation together with the calculation of heat transfer rate by logarithmic mean temperature difference method. Strength analysis of major parts was carried to examine their dimensions satisfying heat transfer and pressure loss requirements.

Rigorous Modeling and Simulation of Multi-tubular Reactor for Water Gas Shift Reaction (Water Gas Shift Reaction을 위한 Multi-tubular Reactor 모델링 및 모사)

  • Park, Junyong;Choi, Youngjae;Kim, Kihyun;Oh, Min
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.931-937
    • /
    • 2008
  • Rigorous multiscale modelling and simulation of the MTR for WGSR was carried out to accurately predict the behavior of process variables and the reactor performance. The MTR consists of 4 fixed bed tube reactors packed with heterogeneous catalysts, as well as surrounding shell part for the cooling purpose. Considering that fluid flow field and reaction kinetics give a great influence on the reactor performance, employing multiscale methodology encompassing Computational Fluid Dynamics (CFD) and process modeling was natural and, in a sense, inevitable conclusion. Inlet and outlet temperature of the reactant fluid at the tube side was $345^{\circ}C$ and $390^{\circ}C$, respectively and the CO conversion at the exit of the tube side with these conditions approached to about 0.89. At the shell side, the inlet and outlet temperature of the cooling fluid, which flows counter-currently to tube flow, was $190^{\circ}C$ and $240^{\circ}C$. From this heat exchange, the energy saving was achieved for the flow at shell side and temperature of the tube side was properly controlled to obtain high CO conversion. The simulation results from this research were accurately comparable to the experimental data from various papers.

A Stress Analysis of Feeedwater Heater Shell in Nuclear Power Plant (원전 급수가열기 동체 응력 해석)

  • Song, Seok-Yoon;Kim, Hyung-Nam
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Feedwater Heaters are important components in a nuclear power plant. As the age of heater increases, the maintenance cost required for continuous operation also increases. Most heaters have the carbon steel shells, tube support plates and flow baffles. The carbon steel is susceptible to flow-accelerated corrosion. This is especially true if the flow has a two-phase mixture of steam and condensate. The wall thinning around the wet steam entrance area of the shell is inevitable during some long term operation. The structural integrity of the feedwater heater shell affects the safe operation of the nuclear power plant. Therefore, it is needed for the thinned shell to be repaired. The maintenance method for preventing failure of the shell should be determined by investigating various factors including the stress distribution of thinned area. The stress analysis of the shell including the steam entrance region is studied in this paper. The results of thinned shell is compared with that of intact shell.

Vibration Characteristics of Heat Exchanger Tube Bundles in Two-Phase Cross-Flow (2상 횡유동을 받는 열교환기 관군의 진동특성)

  • 김범식;박태철
    • Journal of KSNVE
    • /
    • v.4 no.2
    • /
    • pp.199-208
    • /
    • 1994
  • Two-phase cross-flow exists in many shell-tube heat exchangers such as nuclear steam generators, condensers and reboilers. An understanding of damping and of flow-induced vibration excitation mechanisms in necessary to avoid problems due to excessive tube vibration. In this paper, we present the results of experiments on normal-triangular tube bundles of pitch to tube diameter ratio, p/d, 1.22, 1.32 and 1.47. The bundle were subjected to air-water mixtures to simulate realistic mass fluxes and vapour qualities corresponding to void fractions from 5 to 99%. Damping, fluidelastic instability and turbulence- induced excitation are discussed. The behaivior of damping and two vibration mechanisms are different for intermittent flows from for bubbly flows. The effect of pitch to tube diameter ratio and void fraction is dominant on damping and fluidelastic instability.

  • PDF