• Title/Summary/Keyword: Shell and Tube

Search Result 227, Processing Time 0.022 seconds

Effect of Impressed Potential on the SCC of Al-Brass (Al-황동의 응력부식균열 특성에 미치는 인가전위의 영향)

  • 정해규;임우조
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.69-74
    • /
    • 2004
  • In general, the protection method of Shell and Tube Type heat exchanger for a vessel has been applied as a sacrificial anode, which is attached at the inner side of the shell. However, this is an insufficient protection method for tube. Therefore, a more suitable method, such as the impressed current cathodic protection for tube protection, is required. Al-brass is the raw material of tubes for heat exchanger of a vessel where seawater is used for cooling the water. It has a high level of heat conductivity, excellent mechanical properties, and a high level of corrosion resistance, due to a cuprous oxide (Cu$_2$O) layer against th seawater. However, in actuality, it has been reported that Al-brass tubes for heat exchanger of a vessel can produce local corrosion, such as stress corrosion cracking (SCC). This paper studied the effect of impressed potential on the stress corrosion cracking of Al-brass for impressed current cathodic protection in 3.5% NaCl +0.1% NH$_4$OH solution, under flow by a constant displacement tester. Based on the test results, the latent time of SCC, stress corrosion crack propagation, and the dezincification phase of Al-brass are investigated.

Development of Multi Effect Distillation for Solar Thermal Seawater Desalination System (태양열 해수담수화 시스템을 위한 다중효용 담수기 개발)

  • Joo, Hong-Jin;Hwang, In-Seon;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • This study was accomplished to evaluate the performance of Multi Effect Distillation(MED) for solar thermal desalination system. It was designed Multi effect distillation with $3m^3$/day capacity and Shell&Tube type heat exchanger. Also, The effective heat transfer of Shell&Tube heat exchanger was used Cu(90%)-Ni(10%) corrugated tube. The parameters relating to the performance of Multi Effect Distillation are known as hot water flow rate. The experimental conditions for each parameters were $18^{\circ}C$ for sea water inlet temperature, $6m^3$/hour sea water inlet volume flow rate, $75^{\circ}C$ for hot water inlet temperature, 2.4, 3.6, and $4.8\;m^3$/hour for hot water inlet volume flow rate, respectively. The results are as follows, Development for Multi effect distillation was required about 40kW heat and 35kW cooling source to produce $3m^3$/day of fresh water. Based on the results of this study, It makes possible to secure economics of desalination system with solar energy which is basically needed development of high efficiency fresh water generator.

PID Control of a Shell and Tube Heat Exchanger System Incorporating Feedforward Control and Anti-windup Techniques (피드포워드 제어와 안티와인드업 기법을 결합한 셀-튜브 열교환기 시스템의 PID 제어)

  • Ahn, Jong-Kap;So, Gun-Baek;Lee, Ju-Yeon;Lee, Yun-Hyung;So, Myong-Ok;Jin, Gang-Gyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.5
    • /
    • pp.543-550
    • /
    • 2014
  • In many industrial processes and operations, such as power plants, petrochemical industries and ships, shell and tube heat exchangers are widely used and probably applicable for a wide range of operating temperatures. The main purpose of a heat exchanger is to transfer heat between two or more medium with temperature differences. Heat exchangers are highly nonlinear, time-varying and show time lag behavior during operation. The temperature control of such processes has been challenging for control engineers and a variety of forms of PID controllers have been proposed to guarantee better performance. In this paper, a scheme to control the outlet temperature of a shell and tube heat exchanger system that combines the PID controller with feedforward control and anti-windup techniques is presented. A genetic algorithm is used to tune the parameters of the PID controller with anti-windup and the feedforward controller by minimizing the IAE (Integral of Absolute Error). Simulation works are performed to study the performance of the proposed method when applied to the process.

Nonlinear Finite Element Analysis of Composite Girder with Concrete Infilled Tube (콘크리트 충전 강관을 갖는 프리스트레스트 합성형 거더의 강-콘크리트 계면 거동)

  • Shin, Dong-Hun;Kim, Young-Hoon;Lee, Ta;Kang, Byeong-Su;Lee, Yong-Hak
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.386-389
    • /
    • 2006
  • Prestressed composite girder bridges with concrete infilled steel tube at negative flexural moment region takes the advantages of enhancing local buckling and flexural resistances resulting from the lateral confining effect of concrete due to the interactive reaction in the interface layer of steel tube and concrete. The interface behavior in concrete infilled tube of the test composite girder is analyzed by 8-node zero thickness interface finite element combined with 3-D. elastoplastic concrete constitutive model and 3-D. elastoplastic Mindlin shell element. The interface effects between infillled concrete and steel tube are investigated through the comparision of the experimental and numerical results.

  • PDF

Structural analysis of circular UHPCC form for hybrid pier under construction loads

  • Wu, X.G.;Zhao, X.Y.;Han, S.M.
    • Steel and Composite Structures
    • /
    • v.12 no.2
    • /
    • pp.167-181
    • /
    • 2012
  • Ultra high performance cementitious composite material is applied to the design of multifunctional permanent form for bridge pier in this paper. The basic properties and calculating constitutive model of ultra high performance cementitious composite are introduced briefly. According to momental theory of thin-walled shell, the analytical solutions of structural behavior parameters including circumferential stress, longitudinal stress and shear stress are derived for UHPCC thin-walled circular tube. Based on relevant code of construction loads (MHURD of PPC 2008), the calculating parameter expression of construction loads for UHPCC thin-walled circular tube is presented. With geometrical dimensions of typical pier, the structural behavior parameters of UHPCC tube under construction loads are calculated. The effects of geometrical parameters of UHPCC tube on structural behavior are analyzed and the design advices for UHPCC tube are proposed. This paper shall provide a scientific reference for UHPCC permanent form design and UHPCC hybrid structure application.

Fouling Characteristics of Washable Shell and Coil Heat Exchanger (세척이 가능한 원통 코일형 열교환기의 파울링 특성에 관한 연구)

  • Hwang, Jun Hyeon;Na, Byung Chul;Oh, Sai Kee;Koo, Kyoung Min;Lee, Jae Keun;Ahn, Young Chull
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.2
    • /
    • pp.69-74
    • /
    • 2015
  • In this work, we studied the shell and helically coiled tube heat exchangers. Shell and coil heat exchangers with different rate of water flow and plate heat exchanger with same capacity were tested for condensing conditions. We proposed design guide using modified Wilson plot method. We compared fouling characteristics between shell and coil heat exchanger and plate heat exchanger, when they were washed and were not washed. The shell and coil heat exchanger showed 120% of higher saturated fouling resistance value and 4% of better heat transfer ratio than the plate heat exchanger.

Anti-angiogenesis Activity and Characterization of Extract of Ark Shell Scapharca subcrenata (새꼬막(Scapharca subcrenata) 추출물의 혈관신생 억제활성과 특성)

  • Lim, Chi-Won;Park, Hee-Yeon;Shim, Kil-Bo;Yoon, Na-Young;Kim, Yeon-Kye
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.4
    • /
    • pp.303-306
    • /
    • 2012
  • Anti-angiogenesis therapy is one of the most promising strategies for the treatment of cancer. We investigated the anti-angiogenesis activity of an extract from the ark shell Scapharca subcrenata and attempted to purify the active compounds. The crude extract of the ark shell inhibited the proliferation of human vein endothelial cells (HUVEC-1) and tube formation by human dermal microvascular endothelial cells (HMEC-1). The methanol extract of the viscera of the ark shell showed activity. The ark shell extract acts as an angiogenesis inhibitor and could be developed further as a health substance, functional food, and anticancer agent.

Numerical analysis for heat transfer and pressure drop characteristics of (다양한 배플 인자에 따른 셀-튜브 열교환기의 열전달 및 압력강하 특성에 관한 수치해석)

  • Hou, Rong-Rong;Park, Hyeong-Seon;Yoon, Jun-Kyu;Lim, Jong-Han
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.367-375
    • /
    • 2014
  • In numbers of kinds of heat exchanger, the shell-tube heat exchanger is the most commonly used type of heat exchanger in the industry field. In order to improve the thermal performance of the heat exchanger, this study was analyzed heat transfer characteristics according to arrangement of baffle and direction of baffle and bump phase of baffle about shell-tube heat exchanger using appropriate SST (Shear Stress Transport) turbulence model for flow separation and boundary layer analysis. As the boundary condition for CFD (Computational Fluid Dynamics) analysis, the inlet temperature of shell side was constantly 344 K and the variation of the water flow rate was 6, 12, 18 and 24 l/min. As the result of analysis, zigzag baffle arrangement enhances heat transfer rate and pressure drop. Furthermore, in the direction of the baffle, heat transfer rate is more improved with vertical type and angle $45^{\circ}$ type than existing type, and pressure drop was little difference. Also, the bump shape of baffle surface contributes to heat transfer rate and pressure drop improvement due to the increased heat transfer area. Through analysis results, we knew that the increase of the heat transfer was influenced by flow separation, fluid residual time, contact area with the tube, flow rate, swirl and so on.