• 제목/요약/키워드: Shell Mode Vibration

검색결과 138건 처리시간 0.025초

배관 Shell Mode 진동 평가방법에 대한 연구 (A Study on Evaluation Method for Piping Shell Mode Vibration)

  • 전창빈;박수일;전형식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1285-1289
    • /
    • 2006
  • In a large diameter piping system, high frequency energy can produce excessive noise, high vibration, and failures of thermo-well, instrumentation, and attached small-bore piping. High frequency energy is generated by flow induced vibration like vortex shedding in orifices and valves. Once this energy is generated, amplification may occur from acoustical and/or structural resonances, resulting in high amplitude vibration and noise. At low frequencies, pipe vibration occurs laterally along the pipe's length, but at higher frequencies, the pipe shell wall vibrates radially across its cross-section. The simple beam analogy which is based on the beam mode vibration can not be applied to evaluate shell mode vibration. ASME OM3 recommends that the stress be measured directly by strain gauge and be evaluated according to the fatigue curves of the piping material. This Paper discusses the excitation and amplification mechanism relevant to high frequency energy generation in piping system, the monitoring method of the shell mode vibration in ASME OM3, the evaluation method generally used in the industry. Finally this paper presents the stress evaluation of the cavitating venturi down stream piping, where high frequency shell mode vibrations were observed during the operation.

  • PDF

Natural frequencies and mode shapes of thin-walled members with shell type cross section

  • Ohga, M.;Shigematsu, T.;Hara, T.
    • Steel and Composite Structures
    • /
    • 제2권3호
    • /
    • pp.223-236
    • /
    • 2002
  • An analytical procedure based on the transfer matrix method to estimate not only the natural frequencies but also vibration mode shapes of the thin-walled members composed of interconnected cylindrical shell panels is presented. The transfer matrix is derived from the differential equations for the cylindrical shell panels. The point matrix relating the state vectors between consecutive shell panels are used to allow the transfer procedures over the cross section of the members. As a result, the interactions between the shell panels of the cross sections of the members can be considered. Although the transfer matrix method is naturally a solution procedure for the one-dimensional problems, this method is well applied to thin-walled members by introducing the trigonometric series into the governing equations of the problem. The natural frequencies and vibration mode shapes of the thin-walled members composed of number of interconnected cylindrical shell panels are observed in this analysis. In addition, the effects of the number of shell panels on the natural frequencies and vibration mode shapes are also examined.

다양한 경계조건에서 원판이 결합된 원통 셸의 고유진동 해석 (Analysis of Free Vibration of a Cylindrical Shell with a Circular Plate Under Various Kinds of Boundary Conditions)

  • 임정식;손동성
    • 소음진동
    • /
    • 제8권5호
    • /
    • pp.936-948
    • /
    • 1998
  • A theoretical formulation for the analysis of free vibration of a cylindrical shell with a circular plate attached at an arbitrary axial position of the shell under various kinds of boundary conditions was derived and programed to get the numerical results for natural frequencies and mode shapes of the combined system. The boundary conditions of the shell to be considered here are clamped-free, clamped-simply supported, both ends clamped and both ends simply supported. The frequencies and mode shapes from theoretical calculation were compared with those of commercial finite element code, ANSYS. The results showed good agreement with those of ANSYS in frequencies and mode shapes. The program will contribute to the design optimization of a shell/plate combined system through the analysis of natural frequencies and mode shapes for the system.

  • PDF

성덕대왕신종의 맥놀이 지도 (Beat Map of King Song-Dok Bell)

  • Kim, Seock-Hyun
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.353.1-353
    • /
    • 2002
  • Impulse response of a slightly asymmetric cylindrical shell is derived. Receptance method is applied to obtain the vibration mode and natural frequency of the slightly asymmetric cylindrical shell. Impulse response model is used to identify the vibration beat characteristics of King Song-Dok Bell. The theretical mode is compared and verified by the measured mode of King Song-Dok Bell. (omitted)

  • PDF

Observation of Strong In-plane End Vibration of a Cylindrical Shell

  • 길현권
    • 한국음향학회지
    • /
    • 제21권4호
    • /
    • pp.183-183
    • /
    • 2002
  • In this paper, the strong in-plane vibration has been experimentally observed at the end of a finite cylindrical shell. The strong in-plane vibration was generated by the evanescent wave field, which was excited along about half the length of the shell. The evanescent waves were generated due to mode conversion of elastic waves at the ends of the cylindrical shells.

재열기 온도조절 급수배관의 진동저감방안 연구 (A Study on Vibration Control for Reheater Attemperator Piping in Power Plant)

  • 전창빈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1-5
    • /
    • 2007
  • A majority of piping vibration problems are induced by internal fluid pulsation; turbulent flow, vortex shedding at internal discontinuities, and pressure pulsation at equipment nozzles. The pulsation at the pressure sources resonates acoustically with the piping and the amplified pressure pulsation can generate shell mode vibration in the piping. Reheater attemperator piping supplies water from feedwater pump to reheater attemperator to control the boiler temperature. In normal operating condition, the high frequency shell mode vibration occurred in the piping with the high level of sound(105 ${\sim}$ 117 dB). The vibration sources are pressure pulsation in the pump nozzle and the frequencies are related to the blade passing frequencies. The objects of this paper are to analyze the cause of the high frequency vibration and to establish corrective actions.

  • PDF

내부가 유체로 채워진 보강원통쉘의 동적거동 해석 (Dynamic Behavior Analysis of Stiffened Cylindrical Shell Filled with Fluid)

  • 염기언;윤경호;이영신;김종균
    • 대한기계학회논문집A
    • /
    • 제20권9호
    • /
    • pp.2875-2886
    • /
    • 1996
  • This work present the experimental resutls for the free vibration of unstiffened, stiffened cylindrical shell filled with air, half water and full water. The natural frequencies and mode shapes of unstiffened, stiffened cylindrical shell are obtained experimentally also. The natural frequencies of stiffened cylindrical shell were generally highter than those of unstiffened cylindrical shell and natural requencies were decreased as cylindrical shell was filled with water. The effect of circumferential stiffener in the first mode was shown that natural frequency more increased 25% at air environment, 29% at half water environment and 37% at full water than those of unstiffened cylindrical shell, respectively. Also, the natural frequencies were decreased according to the added mass effect of fluid in the shell of unstiffened and stiffened cylindrical shell. The six mode shape results of all cases are simular and given. The natural frequencies are determined for a wide range of parameters : e.g. unstiffened shell, and filled with air, half and full water. The effects of varying the parameters on the free vibration frequencies and mode shapes are discussed.

원통쉘의 좌굴 거동 및 전단 변위에 따른 동적 특성 변화 (Buckling Behavior and Variation of Dynamic Characteristics under Shear Displacement of Cylindrical Shell)

  • 이창훈;우호길;구경회;이재한
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.756-759
    • /
    • 2001
  • The purpose of this paper is to investigate the buckling and dynamic characteristics for the cylindrical shell under shear loading. To do this, a vibration model tests and analyses and static buckling analyses were performed for the reduced scale model of nuclear reactor vessel. From the results of vibration modal analysis with the pre-shear displacement loads, it is known that the beam vibration mode is not affected by the shear displacement, however shell vibration modes are significantly affected by it. As the pre-shear displacement increases to the critical buckling displacement, the 1st shell vibration frequency in greatly reduces and approaches to zero value.

  • PDF

축대칭 원통 탄성 셸의 진동음향 : 평면 모드의 벽 임피던스 (Vibroacoustics of Axisymmetric Cylindrical Elastic Shells : Wall Impedance of the Plane Mode)

  • 박찬일
    • 한국소음진동공학회논문집
    • /
    • 제18권9호
    • /
    • pp.930-936
    • /
    • 2008
  • Fluid loading of a vibrating cylindrical shell has influence on natural frequencies and vibration magnitudes of the shell and the acoustic pressure of fluid. The vibroacoustics of fluid-filled cylindrical shells need the coupled solution of Helmholtz equation and governing equation of a cylindrical shell with boundary conditions. This paper proposed the wall impedance of fluid-filled axisymmetric cylindrical shells, focusing on the inner fluid/shell interaction. To propose the impedance, shell displacements used the linear combination of in vacuo shell modes. Acoustic pressure prediction of fluid used Kirchhoff-Helmholtz integral equation with Green's function of the plane mode. For the demonstration of the proposed results, numerical applications on mufflers were conducted.

Vibration and Noise Control of Structural Systems Using Squeeze Mode ER Mounts

  • Jeong, Weui-Bong;Yoo, Wan-Suk;Jung, Woo-Jin
    • Journal of Mechanical Science and Technology
    • /
    • 제17권12호
    • /
    • pp.1949-1960
    • /
    • 2003
  • This paper presents vibration and noise control of flexible structures using squeeze mode electro-rheological mounts. After verifying that the damping force of the ER mount can be controlled by the intensity of the electric fild, two different types of ER squeeze mounts have been devised. Firstly, a small size ER mount to support 3 kg is manufactured and applied to the frame structure to control the vibration. An optimal controller which consists of the velocity and the transmitted force feedback signals is designed and implemented to attenuate both the vibration and the transmitted forces. Secondly, a large size of ER mount to support 200 kg is devised and applied to the shell structure to reduce the radiated noise. Dynamic modeling and controller design are undertaken in order to evaluate noise control performance as well as isolation performance of the transmitted force. The radiated noise from the cylindrical shell is calculated by SYSNOISE using forces which are transmitted to the cylindrical shell through two-stage mounting system.