• Title/Summary/Keyword: Shelf life

Search Result 1,527, Processing Time 0.038 seconds

Analysis of Purchasing Behaviors of Processed Foods in High School Students in Yongin Region (용인지역 고등학생의 가공식품 구매행동 분석)

  • Koo, Hee Jin;Kim, Seong Yeong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.12
    • /
    • pp.1929-1936
    • /
    • 2014
  • This study investigated purchasing behaviors of processed foods in high school students (male 94 and female 85) in the Yongin region. Frequency of eating processed foods was generally once (36.9%) or twice (32.4%) a day. Frequency according to processed food items was in the following order: confectionary (31.3%)> beverages (17.3%)> breads (12.3%)> instant noodles (11.7%) and milk or dairy products (11.7%)> frozen desserts (10.6%). The places for purchasing were a big mart (30.7%), convenience store (28.5%), and school cafeteria (26.8%). The reasons for purchasing were 'tasty' at 43.6% and 'hungry' at 35.2%. Main factors affecting purchasing were 'taste' at 70.9%, followed by price (16.2%)> quantity (5.6%)> nutrition (4.5%). The most important parts of food and nutrition labels were 'shelf-life' (67.0%) and 'calories' (57.5%). Degrees of confirmation of food and nutrition labeling were 'always' (12.3%), 'rarely' (28.5%), and 'sometimes' (59.2%). The reasons for not reading labels were 'unconcerned' (27.9%), 'too tiny lettering' (28.5%), 'hard to understand' (16.2%), and 'habitually' (15.1%). These results reflect low attention of high school students towards healthy food choices using food and nutrition labeling during purchasing. In conclusion, a specific education program for providing accurate product information as well as leading healthy purchasing behaviors should be required.

Quality Preservation of Shredded Carrots Stored in UV LED Packaging System (자외선 LED 포장용기 시스템에 의한 포장절단당근의 품질보존)

  • Kim, Nam Yong;Lee, Dong Sun;An, Duck Soon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.1
    • /
    • pp.135-140
    • /
    • 2014
  • Pre-storage ultra-violet (UV) light treatment on fresh produce is known to inactivate the contaminated microorganisms, activate the defense system, and delay ripening extending the shelf life. As UV light emitting diode (LED) becomes available at a relatively low price, continuous or intermittent UV treatment during chilled storage is possible in a container or package. This study attempted an in situ UV LED treatment on fresh produce stored under a refrigerated container in order to see its potential in the fresh produce storage and further optimize its application conditions. The effect of in-container UV LED irradiation on the quality preservation of shredded carrots was investigated in the air and modified atmosphere (MA) conditions. Two sets of experiment with Escherichia coli inoculation and with natural microbial flora in the air (two 30 minute on-off cycles of 1 $diode/dm^2$ per day at a location above 2 cm) showed a clear and significant effect of the UV LED irradiation on the suppression of microbial growth: 280 nm was the most effective by maintaining a lower microbial count by at least 0.5 log (CFU/g) throughout the 6 day storage period. The carotenoids content of shredded carrots subjected to UV LED treatment at 365 and 405 nm in the air was higher than that of the control shredded carrots. In MA condition of $O_2$ of 1.2~4.3% and $CO_2$ of 8.4~10.6% being indifferent with LED wavelengths, 280 nm UV LED irradiation was also effective in inhibiting the microbial growth. While there was no observed difference in the carotenoids content between untreated and UV LED-treated shredded carrots in MA, UV LED irradiation at 365 and 405 nm was slightly better in DPPH radical scavenging activity. The use of UV LED in storage container or package seems to give the benefits of preserving the microbial and nutritional qualities of minimally processed fruits and vegetables.

Predictive Modeling of Bacillus cereus on Carrot Treated with Slightly Acidic Electrolyzed Water and Ultrasonication at Various Storage Temperatures (미산성 차아염소산수와 초음파를 처리한 당근에서 저장 중 Bacillus cereus 균의 생육 예측모델)

  • Kim, Seon-Young;Oh, Deog-Hwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.8
    • /
    • pp.1296-1303
    • /
    • 2014
  • This study was conducted to develop predictive models for the growth of Bacillus cereus on carrot treated with slightly acidic electrolyzed water (SAcEW) and ultrasonication (US) at different storage temperatures. In addition, the inactivation of B. cereus by US with SAcEW was investigated. US treatment with a frequency of 40 kHz and an acoustic energy density of 400 W/L at $40^{\circ}C$ for 3 min showed the maximum reduction of 2.87 log CFU/g B. cereus on carrot, while combined treatment of US (400 W/L, $40^{\circ}C$, 3 min) with SAcEW reached to 3.1 log CFU/g reduction. Growth data of B. cereus on carrot treated with SAcEW and US at different temperatures (4, 10, 15, 20, 25, 30, and $35^{\circ}C$) were collected and used to develop predictive models. The modified Gompertz model was found to be more suitable to describe the growth data. The specific growth rate (SGR) and lag time (LT) obtained from the modified Gompertz model were employed to establish the secondary models. The newly developed secondary models were validated using the root mean square error, bias factor, and accuracy factor. All results of these factors were in the acceptable range of values. After compared SGR and LT of B. cereus on carrot, the results showed that the growth of B. cereus on carrot treated with SAcEW and US was slower than that of single treatment. This result indicates that shelf life of carrot treated with SAcEW and US could be extended. The developed predictive models might also be used to assess the microbiological risk of B. cereus infection in carrot treated with SAcEW and US.

Quality Changes of Fresh-Cut Leafy and Condiment Vegetables during Refrigerated Storage (신선편이 엽채류 및 조미채소류의 냉장저장 중 품질변화)

  • Kim, Su-Jin;Sun, Shih-Hui;Kim, Gi-Chang;Kim, Haeng-Ran;Yoon, Ki-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.8
    • /
    • pp.1141-1149
    • /
    • 2011
  • The objective of this study was to analyze quality changes during storage of fresh-cut produce (leafy vegetables and condiment vegetables) as a function of packaging and storage temperature. Fresh-cut produce was washed using a three step cleaning process and was packed in vacuum packaging (green onion, hot pepper, onion, baechu) and perforated film packaging (buchu and perilla leaf). The effects of packaging method and storage temperature on quality of fresh-cut produce were determined by analyzing total plate counts, E. coli, coliform groups, moisture content, pH, Aw, surface color, and exterior quality during storage at 4 and 10$^{\circ}C$. According to the results, surface color change and microbial growth were delayed during storage at 4$^{\circ}C$. Additionally, E. coli was not detected during storage. Generally, moisture content decreased in the perforated film packaging. Changes in surface quality such as skin browning, softening of tissue and chlorosis at 4$^{\circ}C$ were inhibited, whereas rapid vacuum annealing and changes in color and flavor were observed in the sample stored at 10$^{\circ}C$. The result indicated that overall quality of the fresh-cut produce at 4$^{\circ}C$ was well maintained. The perforation in packing materials did not significantly increase the number of microorganisms on buchu and perilla leaf. The proper packaging methods and temperature may beneficial effect on microbial safety, quality and thus result in longer shelf-life fresh-cut vegetables during distribution.

Comparison of Storability of Radish Sprouts According to Simulated Distribution Temperature Conditions (모의 유통 온도조건에 따른 MA 저장중 무순의 저장성 비교)

  • Kang, Ho-Min;Choi, In-Lee;Kim, Il-Seop
    • Journal of Bio-Environment Control
    • /
    • v.18 no.2
    • /
    • pp.166-170
    • /
    • 2009
  • The temperature fluctuations was investigated in cold distribution chain of radish sprout, typical of commercial practice. Although the temperature of distribution chain was maintained below 5$^{\circ}C$ in precooling and packaging steps, and 10$^{\circ}C$ in transporting, temperature of loading step increased up to 18$^{\circ}C$ at market. Based on this investigation, the simulated cold distribution conditions were consisted of precooling and packaging step; 5$^{\circ}C$ for 12 hours and transporting and loading steps; 5$^{\circ}C$, 10$^{\circ}C$, 20$^{\circ}C$ and $^{\circ}C$ for 6 hours, and storage and market steps; 5$^{\circ}C$ and 10$^{\circ}C$ for 17 days. The radish sprouts were cultivated at 25$^{\circ}C$ and dark condition for S days and placed in light condition for greening. They were packaged by 25 ${\mu}m$ ceramic film after precooling for 6 hours in 5$^{\circ}C$. The fresh weight loss and visual quality of radish sprout decreased with the increase of the temperature in transporting and loading steps. The carbon dioxide content of packages increased, but the oxygen content decreased rapidly in 1day after storage, as the temperature of transporting and loading steps increased. The ethylene content in packages increased fastest in higher temperature of transporting and loading steps treatment, and showed highest in 5$^{\circ}C$-30$^{\circ}C$-10$^{\circ}C$ treatment (temperature of precooling and packaging steps for 12 hours - temperature of transporting and loading steps for 6 hours - temperature of storage step for 14 days) followed by 5$^{\circ}C$-20$^{\circ}C$-10$^{\circ}C$ treatment. The high temperature of transporting and loading steps resulted in deterioration qualities and atmosphere conditions in packages of sprout. These results suggested that the temperature fluctuation in distribution should influence the shelf-life of radish sprouts, even thought the periods of fluctuation was just 6 hours.

Optimal relative humidity for Pleurotus eryngii cultivation (큰느타리(새송이)버섯 최적 생육습도 조건)

  • Kim, Sun Young;Kim, Min-Keun;Im, Chak Han;Kim, Kyung-Hee;Kim, Dong Sung;Kim, Tae-Sung;Park, Ki Kwan;Lee, Sang Dae;Ryu, Jae-San
    • Journal of Mushroom
    • /
    • v.11 no.3
    • /
    • pp.131-136
    • /
    • 2013
  • The effects of fixed and variable relative humidity on fruiting body formation and characters of Pleurotus eryngii were investigated with normal and thinning treatment plots. In fixed relative humidity, as humidity was lower, period of harvest was longer as well as days for pinheading in the both of normal and thinning plots. In the normal plot, qualities of mushroom were 5.5, 5.8, and 6.3 and yield was 98.6 g per bottle for 90% relative humidity, it was best. In the thinning plot, qualities of mushroom were 7.7, 8.4, and 8.5 and yields were 102.1, 105.8, and 116.9 g at 70, 80, and 90% respectively. In variable relative humidity with a thinning plot, the yield of P. eryngii on condition I(>90% for 1 day ${\rightarrow}$ 85% until thinning(for about 11 days) ${\rightarrow}$ 80%) and III(>90% until pin-heading(about for a week) ${\rightarrow}$ 85% until thinning(about for 5 days) ${\rightarrow}$ 80%) were 85.5 and 87.8 g per bottle, and qualities were 7.8 and 8.0 respectively. For long shelf life and a cultural control of bacterial soft rot disease, the condition I will be more largely adopted by mushroom farmers.

Resistance and Survival of Cronobacter sakazakii under Environmental Stress of Low Temperature (저온 환경에서 Cronobacter sakazakii의 저항과 생존)

  • Kim, Se-Hun;Jang, Sung-Ran;Chung, Hyun-Jung;Bang, Woo-Suk
    • Food Science and Preservation
    • /
    • v.18 no.4
    • /
    • pp.612-619
    • /
    • 2011
  • Cronobacter sakazakii has been isolated from a wide range of environmental sources and from several foods of animal and plant origin. The objective of this study was to determine the resistance of C. sakazakii (ATCC 12868, ATCC 29004, and ATCC 29544) in cold, cold-freeze thaw, cold-acid, and cold starvation-freeze thaw stress. The number of C. sakazakii decreased to 1 log CFU/mL at $5^{\circ}C$ (cold storage) for 10 days. When C. sakazakii was cultivated at a low temperature ($13^{\circ}C$), the population of C sakazakii ATCC 12868 and 29004 increased to $10^9$ CFU/mL, and the population of C. sakazakii ATCC 29544 increased to $10^8$ CFU/mL. For C. sakazakii ATCC 12868 and 29004, the cold-adapted cells ($5^{\circ}C$ 24 hr) decreased by 4 log CFU/mL, and the low-temperature-cultivated cells ($13^{\circ}C$) decreased by 0.5 log CFU/mL. In this study, low-temperature cultivation enhanced the freeze-thaw cross-resistance due to the metabolic changes in the cells. Cold stress ($5^{\circ}C$ 48 hr, $13^{\circ}C$ cultivation) enhanced the cold-acid cross-resistance. The cold-starved cells in the sterilized 0.1% peptone water enhanced the freeze-thaw cross-resistance with significant differences (p<0.05). Therefore, the increased tolerance of the cold-adapted or low-temperature-cultivated C. sakazakii cells to freeze-thaw, acid, or starvation suggests that such environments should be considered when processing minimally processed foods or foods with extended shelf life.

Current Status of the Research on the Postharvest Technology of Melon(Cucumis melo L.) (멜론(Cucumis melo L.) 수확 후 관리기술 최근 연구 동향)

  • Oh, Su-Hwan;Bae, Ro-Na;Lee, Seung-Koo
    • Food Science and Preservation
    • /
    • v.18 no.4
    • /
    • pp.442-458
    • /
    • 2011
  • Among Cucubitaceae, melon (Cucumis melo) is one of the most diversified fruits, with various forms, sizes, pulps, and peel colors, In addition, it is a commercially important crop because of its high sweetness, deep flavor, and abundant juice. In the species, there are both climacteric and non-climacteric melons depending on the respiration and ethylene production patterns after harvest. Ethylene is also considered a crucial hormone for determining sex expression, Phytohormones other than ethylene interact and regulate ripening, There are some indices that can be used to evaluate the optimum harvest maturity. The harvest time can be estimated after the pollination time, which is the most commonly used method of determining the harvest maturity of the fruit. Besides the physiological aspects, the biochemical alterations, including those of sweetness, firmness, flavor, color, and rind, contribute to the overall fruit quality. These changes can be categorized based on the ethylene-dependent and ethylene-independent phenomena due to the ethylene-suppressed transgenic melon. After harvest, the fruits are precooled to $10^{\circ}C$ to reduce the field heat, after which they are sized and packed. The fruits can be treated with hot water ($60^{\circ}C$ for 60 min) to prevent the softening of the enzyme activity and microorganisms, and with calcium to maintain their firmness. 1-methylenecyclopropene (1-MCP) treatment also maintains their storability by inhibiting respiration and ethylene production. The shelf life of melon is very short even under cold storage, like other cucurbits, and it is prone to obtaining chilling injury under $10^{\circ}C$. In South Korea, low-temperature ($10^{\circ}C$) storage is known to be the best storage condition for the fruit. For long-time transport, CA storage is a good method of maintaining the quality of the fruit by reducing the respiration and ethylene. For fresh-cut processing, washing with a sanitizing agent and packing with plastic-film processing are needed, and low-temperature storage is necessary. The consumer need and demand for fresh-cut melon are growing, but preserving the quality of fresh-cut melon is more challenging than preserving the quality of the whole fruit.

Effects of the Initial Storage Temperature of a PA Film-packaged Muskmelon (Cucumismelo L.) during Its Storage (초기 저장온도 및 PA 필름 포장재가 머스크멜론의 저장 중 품질에 미치는 영향)

  • Cha, Hwan-Soo;Lee, Seon-Ah;Kwon, Ki-Hyun;Kim, Byeong-Sam;Choi, Duck-Joo;Youn, Aye-Ree
    • Food Science and Preservation
    • /
    • v.20 no.1
    • /
    • pp.14-22
    • /
    • 2013
  • The effects of the initial storage temperature and the PA film packaging on the extension of the shelf-life and the improvement of the postharvest storage quality of muskmelons were studied during their storage. Their storage quality was tested as follows: PA-film-wrapped muskmelons, stored at $2^{\circ}C$ or $7^{\circ}C$ for 30 days after their harvest, were kept at $10^{\circ}C$ for 27 days (total: 57 days). On the fifth day of storage at $10^{\circ}C$ (35th day overall), the weight loss reached 6.4% in the 7-control. However, the 2-PA showed the smallest loss of 2.2%. The soluble solids content and the acidity that were measured before the storage were $10.8^{\circ}Brix$ and 0.26% in all the groups. After 27 days of storage at $10^{\circ}C$ (on the 57th day overall), the values were highest in the 2-PA group with $9.7^{\circ}Brix$ and 0.15%, respectively. Microorganisms were not detected at first; but on the fifth day of storage at $10^{\circ}C$ (35th day overall), their values were 3.87 and 2.68 log CFU/g in the seven-control and the 2-PA, respectively. In other words, the 2-PA was found to be more effective in inhibiting microbial proliferation. In relation to sensory properties such as appearance, flavor, sweetness and chewiness, the 2-PA was superior to the other groups and was found to be most effective in improving the storability of muskmelons. In conclusion, it was found that low-temperature injury and fast storage quality deterioration did not occur in film-wrapped muskmelons that were stored at $2^{\circ}C$ for 30 days after they were harvested.

Effect of packing type and storage temperature on microbial growth and quality of fresh-cut onions (Allium cepa cv. turbo) (포장방법과 저장온도가 신선편이 양파의 품질 및 미생물 생장에 미치는 영향)

  • Bae, Yeoung-Seuk;Choi, Hyun-Jin;Lee, Jung-Soo;Park, Mehea;Choi, Ji-Weon;Kim, Ji-Gang
    • Food Science and Preservation
    • /
    • v.23 no.5
    • /
    • pp.623-630
    • /
    • 2016
  • Inappropriate storage of fresh-cut onions may result in losses of good quality. To understand storage conditions for shelf-life and quality of fresh-cut onions, The effect of packing type and storage temperature on the quality of fresh-cut onions was evaluated. Onions stored at $0^{\circ}C$ for 2 months were peeled off after removing root and shoot parts. Each three peeled onions were packed in a polyethylene film (PE, $50{\mu}m$) or in a polyethylene/polypropylene film (PE/PP, $100{\mu}m$) with vacuum treatment (70 cmHg) and stored at different temperatures (4, and $10^{\circ}C$) for 21 days. The following analyses were examined to evaluate the quality of fresh-cut onions: microbial population, surface color, titratable acidity and pH, respiration rate, and sensory quality. Fresh-cut onions stored at $4^{\circ}C$ showed less aerobic and coliform bacterial population than those stored at $10^{\circ}C$ during observation periods. Fungal populations of fresh-cut onions packed in PE film stored at $10^{\circ}C$ increased significantly after 13 days. E. coli was not detected in all treatments during whole storage periods. Surface colors of fresh-cut onions were not affected by packing type and storage temperature, however, color difference (${\Delta}E$) of fresh-cut onions in PE/PP film stored at $10^{\circ}C$ was significantly higher than those of other treatments. Titratable acidity of fresh-cut onions was not affected by packing type and storage temperature. However, pH of fresh-cut onions packed in PE film stored at $10^{\circ}C$ increased gradually over the whole storage period. Fresh-cut onions packed in PE film showed higher $CO_2$ and less $O_2$ concentrations at $10^{\circ}C$ than those at $4^{\circ}C$. The sensory quality of fresh-cut onions was significantly affected by packing type and storage temperature after 13 days. Particularly, vacuum treatment in PE/PP film showed better sensory quality than that of PE film package at the same storage temperature. It was concluded that vacuum treatment and storage at $4^{\circ}C$ could be effective to prolong the quality of fresh-cut onions up to 21 days.