• 제목/요약/키워드: Sheet metal process

검색결과 680건 처리시간 0.021초

원형컵 드로잉 공정에 미치는 영향인지에 관한 실험적 연구 (Experimental Study on the Parameters Affect Cylindrical Cup Drawing Process)

  • 정동원;양경부;김광희
    • 소성∙가공
    • /
    • 제8권5호
    • /
    • pp.449-453
    • /
    • 1999
  • Sheet metal forming process is a non-linearity problem which is affected by various process variables, such as geometric shape of punch and die, frictional characteristic, etc.. Therefore, the knowledge of the influence of the process variables is needed in the design of sheet metal working processes. In this paper, cylindrical cup drawing tests for blank holding force, punch speed and lubrication between sheet material and tool were carried out to investigate the influence upon sheet formability. Experimental results were discussed about the defects on the deformation behaviors during the forming process.

  • PDF

다중곡률 판재성형을 위한 비정형롤판재성형 공정의 형상설계변수에 대한 연구 (Effect of Shape Design Variables on Flexibly-Reconfigurable Roll Forming of Multi-curved Sheet Metal)

  • 손소은;윤준석;김정;강범수
    • 소성∙가공
    • /
    • 제23권2호
    • /
    • pp.103-109
    • /
    • 2014
  • Flexibly-reconfigurable roll forming (FRRF), which is a sheet forming process for multi-curved sheet metal, may solve both the economic and technical problems incurred in using a conventional die forming process. In the FRRF process, the multi-curved sheet metal is formed by different strain distributions on the sheet metal, and the reconfigurable rollers are used as tools during the forming. Therefore, a thorough investigation focused on the reconfigurable rollers is required for the realization of the FRRF process prior to the fabrication of FRRF machine. In the current study, a series of finite element simulations were conducted to study the load distributions experienced by the reconfigurable roller. In order to verify the shape design variables, the effect of the metal thickness on the curvatures of sheet is also presented.

박판페어의 기계적 접합장치의 결합강도 개선에 관한 연구 (Improvement of Joining Strength of Mechanical Joining Process of a Sheet Metal Pair)

  • 윤희주;김태정;양동열;권순용;신철수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.29-32
    • /
    • 2002
  • The mechanical joining process of a sheet metal pair has been developed in order to replace the resistance spot welding process in case that joining of mechanically unweldable materials and coated sheet metals with different thickness are needed. Form-joining or clinching, a kind of mechanical joining process, is defined as joining process of a sheet metal pair by geometric constraint imposed by plastic deformation of workpieces without any additive part. It has been reported that the joining strength by commercial form-joining apparatus is 50∼70 percent of that by resistance spot welding. Therefore, a two-step form-joining process with a secondary punch is proposed. The device is designed to improve the joining strength by increasing the geometric constraint of the deformed shape by combining a primary punch, a secondary punch and a female die. In order to verify the improved joining strength by the designed process, the tensile-shear strength, the peel-tension strength and the asymmetric peel-tension strength are compared with those by the TOX process and resistance spot welding.

  • PDF

탄소성 유한요소법과 직접미분법물 이용한 박판성형공정에서의 설계민감도 해석 (Design Sensitivity Analysis for the Sheet Metal Forming Process with an Elasto-plastic Finite Element Analysis and a Direct Differentiation Approach)

  • 김세호;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.93-96
    • /
    • 2001
  • Design sensitivity is calculated in the sheet metal forming process with an elasto-plastic finite element analysis and a direct differentiation method The sensitivity analysis is concerned with the time integration the constitutive relation considering planar anisotropy, shell elements and the contact scheme. The present result is compared with the result obtained with the finite difference approach in deep drawing processes. The obtained sensitivity information is applied to the simple optimization process for the sheet metal forming process.

  • PDF

샌드위치 강판의 전단가공에 있어서 전단면에 미치는 금형 설계 변수의 영향 (Influence of die design variables on the sheared surface in cut-off process of sandwich sheet metal)

  • 김지용;최종식;김종호;정완진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.57-61
    • /
    • 2004
  • in order to improve the quality of the sheared surface in cutting of sandwich sheet metals the cut-off operation is mainly investigated which is the typical shearing process in sheet metal forming technology. For experiments the cut-off die is made which can be easily adjusted by die design variables such as blankholding force, pad force, and clearance. The sheet metals chose as specimen are clad304(STS304-Al1050-STS304) and anti-vibration sheet metal. The shearing process is visualized by the computer vision system installed in front of the cut-off die and the sheared surface before and after cut-off operation is measured and quantitatively compared with the help of the optical microscope. From test results the good sheared surface was shown when the clearance gets small with large blankholding force.

  • PDF

박판성형 공정에서 발생하는 주름의 예측에 관하여 (On the Prediction of the Wrinkling Initiation in Sheet Metal Forming Processes)

  • 김종봉;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 추계학술대회 논문집
    • /
    • pp.124-127
    • /
    • 2000
  • The finite element analyses of the wrinkling initiation and growth in the sheet metal forming process provide the detailed information about the wrinkling behavior of sheet metal. The direct analyses of the wrinkling initiation and growth, however, bring about a little difficulty in complex industrial problems because it needs large memory size and long computation time. For the description of wrinkling growth, the mesh elements should be sufficiently small and the size of finite element matrix becomes large. In the static implicit finite element method therefore, the direct analysis of wrinkling growth in a complex sheet metal forming process is rather difficult. From the industrial viewpoint of tooling design, the readily available information of possibility and location of wrinkling is sometimes more preferable to the detailed time-consuming information. In the present study, therefore, the wrinkling factor that shows locations and relative possibility of wrinkling initiation is proposed as a convenient tool of relative wrinkling estimation based on the energy criterion. The location and relative possibility of wrinkling initiation are predicted by calculating the wrinkling factor in various sheet metal forming processes such as cylindrical cup deep drawing, spherical cup deep drawing, and elliptical cup deep drawing. The wrinkling factor is also implemented in the analysis of the door inner stamping process to predict wrinkling.

  • PDF

전자기력을 이용한 박판 성형공정의 해석적 연구 (Numerical Simulation of Thin Sheet Metal Forming Process using Electromagnetic Force)

  • 서영호;허성찬;구태완;송우진;강범수;김정
    • 소성∙가공
    • /
    • 제17권1호
    • /
    • pp.35-45
    • /
    • 2008
  • Electromagnetic Forming (EMF) technology such as magnetic pulse forming, which is one of the high velocity forming methods, has been used for the joining and forming process in various industry fields. This method could be derived a series of deformation of sheet metal by using a strong magnetic field. In this study, numerical approach by finite element simulation of the electromagnetic forming process was presented. A transient electromagnetic finite element code was used to obtain the numerical model of the time-varying currents that are discharged through the coil in order to obtain the transient magnetic forces. Also, the body forces generated in electromagnetic field were used as the loading condition to analyze deformation of thin sheet metal workpiece using explicit dynamic finite element code. In this study, after finite element analysis for thin sheet metal forming process with free surface configuration was performed, analytical approach for a dimpled shape by using EMF was carried out. Furthermore, the simulated results of the dimpled shape by EMF were compared with that by a conventional solid tool in view of the deformed shape. From the results of finite element analysis, it is confirmed that the EMF process could be applied to thin sheet metal forming.

고무 패드 성형 공정의 유한요소 모델링 (Finite Element Modeling of Rubber Pad Forming Process)

  • 신수정;이태수;오수익
    • 한국정밀공학회지
    • /
    • 제15권9호
    • /
    • pp.117-126
    • /
    • 1998
  • For investigating rubber pad sheet metal forming process, the rubber pad deformation characteristics as well as the contact problem of rubber pad-sheet metal has been analyzed. In this paper, the behavior of the rubber deformation is represented by hyper-elastic constitutive relations based on a generalized Mooney-Rivlin model. Finite element procedures for the two-dimensional responses, employing total Lagrangian formulations are implemented in an implicit form. The volumetric incompressibility condition of the rubber deformation is included in the formulation by using penalty method. The sheet metal is characterized by elasto-plastic material with strain hardening effect and analyzed by a commercial code. The contact procedure and interface program between rubber pad and sheet metal are implemented. Inflation experiment of circular rubber pad identifies the behaviour of the rubber pad deformation during the process. The various form dies and scaled down apparatus of the rubber-pad forming process are fabricated for simulating realistic forming process. The obtaining experimental data and FEM solutions were compared. The numerical solutions illustrate fair agreement with experimental results. The forming pressure distribution according to the dimensions of sheet metal and rubber pads, various rubber models and rubber material are also compared and discussed.

  • PDF

기능창을 이용한 박판성형의 공정 최적화 (Application of Operating Window to Robust Process Optimization of Sheet Metal Forming)

  • 김경모;인정제
    • 한국기계가공학회지
    • /
    • 제8권4호
    • /
    • pp.110-121
    • /
    • 2009
  • It is essential to embed product quality in the design process to win the global competition. Many components found in many products including automobiles and electronic devices are fabricated using sheet metal forming processes. Wrinkle and fracture are two types of defects frequently found in the sheet metal forming process. Reducing such defects is a hard problem as they are affected by many uncontrollable factors. Attempts to solve the problem based on traditional deterministic optimization theories are often led to failures. Furthermore, the wrinkle and fracture are conflicting defects in such a way that reducing one defect leads to increasing the other. Hence, it is a difficult task to reduce both of them at the same time. In this research, a new design method for reducing the rates of conflicting defects under uncontrollable factors is presented by using operating window and a sequential search procedure. A new SN ratio is proposed to overcome the problems of a traditional SN ratio used in the operating window technique. The method is applied to optimizing the robust design of a sheet metal forming process. To show the effectiveness of the proposed method, a comparison is made between the traditional and the proposed methods using simulation software, applied to a design of particular sheet metal forming process problem. The results show that the proposed method always gives a more robust design that is less sensitive to noises than the traditional method.

  • PDF

접착-성형 공정을 이용한 중첩된 박판간의 결합 (Form-joining Process with the Aid of Adhesive for Joining of a Sheet Metal Pair)

  • 정창균;김태정;양동열;권순용
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.131-135
    • /
    • 2003
  • The form-joining process (or clinching) uses a set of die and punch to impose the plastic deformation-induced geometric constraint on a sheet metal pair, But their joining strength ranges 50-70 percent of that of the resistance spot welding. In this paper, a new form-joining process with the aid of adhesive is proposed in which an epoxy adhesive is applied to a sheet metal pair, to improve joining strength. The strength and mechanical properties of the new process are discussed and compared for other joining processes.

  • PDF