• 제목/요약/키워드: Sheet metal Forming

검색결과 624건 처리시간 0.022초

중첩된 박판간의 결합을 위한 접착-성형공정 (Form-Joining Process with the Aid of Adhesive for Joining of Sheet Metal Pair)

  • 정창균;김태정;양동열
    • 소성∙가공
    • /
    • 제13권4호
    • /
    • pp.342-349
    • /
    • 2004
  • The form-joining process (or clinching) uses a set of die and punch to impose the plastic deformation-induced geometric constraint on a sheet metal pair. The joining strength from the process ranges 50-70 percent of that of the resistance spot welding. In this paper, a new form-joining process with the aid of an adhesive is proposed in which an epoxy adhesive is applied to a sheet metal pair, and before it cures the pair is clinched to cause the geometric constraint in the form of a protrusion. In order to reduce the forming load and the height of protrusions, a new die and punch set with a very small clearance is devised to reduce the depth of drawing and the forming load. Taguchi method is employed to find the optimal values of design parameters. To implement each case of the orthogonal array, the finite element method is used. The experiments show that in the tensile-shear test, the bonding strength of the new form-joining process with an epoxy adhesive is approximately the same as that of the resistance spot welding; and in comparison with the other two form-joining processes with an epoxy adhesive, the height of protrusions is reduced by more than 65 percent and the forming load by 50 percent.

온간금형에 의한 클래드판재(STS304-A1050-STS304)의 드로잉성 연구 (A Study on the Drawability of Clad Sheet Metal (STS304-A1050-STS304) by Warm Draw Die)

  • 류호연;김종호;류제구
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 금형가공 심포지엄
    • /
    • pp.136-143
    • /
    • 2002
  • Warm draw die technique which is one of the new forming technologies to improve formability of sheet metal is applied to the cylindrical and square cup drawing of stainless-aluminum clad sheets. In experiments the temperature of die and blank holder is varied from room temperature to $180^{\circ}C$, while the punch is cooled by circulation of coolant to increase the fracture strength of workpiece on the punch comer area. Test materials chosen for experiments are STS304-A1050-STS304 clad sheets. Teflon film as a lubricant is used on both sides of a workpiece. The limit drawing ratio and relative drawing depth as well as quality of drawn cups(distribution of thickness)are investigated and validity of warm drawing process is also discussed. No separation between each laminated material after drawing occurred through inspection by microscope as well as application of penetrant remover and bond strength test. Therefore, warm forming technique was confirmed to give better results in deep drawing of stainless clad sheet metal.

  • PDF

A meshfree adaptive procedure for shells in the sheet metal forming applications

  • Guo, Yong;Wu, C.T.;Park, C.K.
    • Interaction and multiscale mechanics
    • /
    • 제6권2호
    • /
    • pp.137-156
    • /
    • 2013
  • In this paper, a meshfree shell adaptive procedure is developed for the applications in the sheet metal forming simulation. The meshfree shell formulation is based on the first-order shear deformable shell theory and utilizes the degenerated continuum and updated Lagrangian approach for the nonlinear analysis. For the sheet metal forming simulation, an h-type adaptivity based on the meshfree background cells is considered and a geometric error indicator is adopted. The enriched nodes in adaptivity are added to the centroids of the adaptive cells and their shape functions are computed using a first-order generalized meshfree (GMF) convex approximation. The GMF convex approximation provides a smooth and non-negative shape function that vanishes at the boundary, thus the enriched nodes have no influence outside the adapted cells and only the shape functions within the adaptive cells need to be re-computed. Based on this concept, a multi-level refinement procedure is developed which does not require the constraint equations to enforce the compatibility. With this approach the adaptive solution maintains the order of meshfree approximation with least computational cost. Two numerical examples are presented to demonstrate the performance of the proposed method in the adaptive shell analysis.

알루미늄 판재의 다단계 드로잉에 있어서 원통컵의 치수 정밀도 비교 (Dimensional Accuracy of Cylindrical Cups in Multi-Stage Drawing of Aluminum Sheet Metal)

  • 최종민;김종호
    • 소성∙가공
    • /
    • 제24권2호
    • /
    • pp.115-120
    • /
    • 2015
  • Deep drawing of cylindrical cups is one of the most fundamental and important processes in sheet metal forming. Circular cups are widely used in industrial fields such as automobile and electronic appliances. Some of these cups are formed by a one-stage process, others such as battery cases and beverage cans are made by a multi-stage process. In the current study the multi-stage deep drawing of aluminum sheet metal is examined. The process consists of two deep drawing operations followed by two ironing operations. The press die, which can be used for the four-stage forming process, was manufactured allowing punch and die components to be easily changed for various experiments. The rolling direction of both the sheet and the drawn cups was always positioned toward the horizontal x-direction on the die face to minimize experimental errors during the progressive forming. The dimensional accuracy of the cylindrical cups formed at each stage and the earing defect due to the anisotropy of sheet were investigated. The influence of anisotropy on the thickness distribution was also examined. Both the thickness and the outer diameter of the cups were measured and compared for each set of experimental conditions. It was found that the dimensional accuracy of cups rapidly improves by employing the ironing process and also by increasing the amount of ironing.

박판 형성을 위한 새로운 추치 제어식 시작 방법의 개발 (Development of a New NC-Controlled Trial Manufacturing Process for Sheet Metal Forming)

  • 조철훈;양동열
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.929-932
    • /
    • 1995
  • In the work, a new computerized incremental forming method having high flexibility has been developed. In the mothod, the ordinary tools are replaced by various small tools, and only the small local region of a sheet blank is incrementally by movement of these tools. Since a small tool moves over the arbitrary surface ofthe dies using a NC machine, it is possible to produce three-dimensional and non-symmetric parts directly from CAD data. Arbitrarily shaped dies are made by LOM(Laminated Object Manufacturing), which is one of the Rapid Prototyping Methods. A forming machine is designed and developed by introducing a computer to control the movement of the tools.

  • PDF

두께가 다른 두 용접판재 성형에 있어서 블랭크 설계 및 용접선 이동에 대한 유한요소법의 역추적기법 적용 (Application of the Backward Tracing Scheme of Finite Element Method to Tailored Blank Design and Welding Line Movement in Sheet Metal Forming)

  • 구태완;최한호;강범수
    • 소성∙가공
    • /
    • 제9권5호
    • /
    • pp.453-462
    • /
    • 2000
  • Tailor-welded blanks are used for forming of automobile structural skin components. The main objective of this study is to achieve weight and cost reduction in manufacturing of components. For successful application of tailor-welded blanks, design of initial welded blanks and prediction of the welding line movement are critical. The utilization of the backward tracing scheme of the finite element method shows to be desirable in design of initial welded blanks for net-shape production and in prediction of the welding line movement. First the design of the initial blank in forming of welded thick sheet with isotropy is tried, and it appears successful in obtaining a net-shape stamping product. Based on the first trial approach, the backward tracing scheme is applied to anisotropic tailored blanks. The welding line movement is also discussed.

  • PDF

임의의 성형조건을 갖는 박판의 평면변형율 해석 (Plane Strain Analysis of Sheet Metal with Arbitrary Forming Conditions)

  • 금영탁;이승열
    • 소성∙가공
    • /
    • 제1권1호
    • /
    • pp.95-103
    • /
    • 1992
  • The plane strain analysis for simulating the stretch/draw forming operation with an arbitrarily-shaped tool profile is introduced. An implicit, incremental, updated Lagrangian formulation with a rigid-viscoplastic constitutive equation is employed. Contact and friction are considered through the mesh-normal, which compatibly describes arbitrary tool surfaces and FEM meshes without depending on the explicit spatial derivatives of tool surfaces. The linear line elements are used for depicting the formed sheet, based on membrane approximation. The FEM formulation is tested in the sections of automotive inner panel and two-side draw-in. Not only the excellent agreement between measured and computed strains is obtained in the stretched section, but also the numerical stability of formulation is verified in the draw-in section.

  • PDF

성형 가공 차이에 의한 에너지 소비량 비교 (Comparison of Energy Consumptions for Various Forming Processes)

  • 윤철호;장아징;채명수;박병철;김영석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.333-336
    • /
    • 2008
  • There are many different kinds of forming processes to make a tubular product such as hydroforming and tube drawing. However, we should consider a better forming process in view point of energy consumption and $CO_2$ emission to save our earth. In this paper we have conducted FEM simulations to the various forming processes for sheet and tubular products to compare their energy consumptions. One example is tubular product and the other for drawn cup. From the comparisons of total energy for hydrofroming and tube sinking processes, hydroforming is consumed more energy than tube drawing. Also the cup drawing from sheet metal and tube sinking for the cup with flange indicate that the tube sinking is better than cup drawing of sheet metal in energy consumption.

  • PDF

유한요소해석을 이용한 마이크로 박판 미세 패턴 롤-롤 성형공정 설계 (Design of Roll-to-Roll Forming Process for Micro Pattern on the Thin Sheet Metal by Finite Element Analysis)

  • 차성훈;신명수;이혜진;김종봉
    • 소성∙가공
    • /
    • 제19권3호
    • /
    • pp.167-172
    • /
    • 2010
  • Roll-to-roll forming process is one of important metal processing technology because the process is simple and economical. These days, with these merits, roll-to-roll forming process is tried to be employed in manufacturing the circuit board, barrier ribs and solar cell plate. However, it is difficult to apply to the forming of micro scale or sub-micro scale pattern. In this study, the roll forming processing for the micro scale is designed and analyzed. The forming of micro pattern for small electric device such as LCD panel by incremental roll forming process is analyzed. Firstly, the optimum analysis conditions are found by several analyses. And then, formability is analyzed for various protrusion shapes at various forming temperatures. The formability is evaluated in terms of filling ratio and damage value. The filling ratio is defined from the tool geometry and critical damage is determined from the analysis of uniaxial tensile test. Finally, optimum forming conditions that guarantee the successful forming are found.

박판쌍 하이드로포밍 공정의 유한요소해석 (Finite Element Analysis for the Hydroforming Process of Sheet Metal Pairs)

  • 김정;장유철;옥충석;강범수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.40-43
    • /
    • 2001
  • The use ef sheet material for the hydroforming of a closed hollow body out of two sheet metal blanks is a new class of hydroforming process. By using a three-dimensional finite element program, called HydroFORM-3D, the hydroforming process of sheet metal pairs is analyzed. Also the comparison of conventional deep-drawing and hydroforming process was conducted. The simulation has concentrated on the influences of the various forming conditions, such as the unwelded or welded sheet metal pairs and friction condition, on the hydroforming process. This computational approach can prevent time-consuming trial-and-error in designing the expensive die sets and hydroforming process of sheet metal pairs.

  • PDF