• Title/Summary/Keyword: Sheet metal

Search Result 1,289, Processing Time 0.027 seconds

A Study of Metalworking Techniques Seen in the Gold Buckle from Seogam-ri Tomb No. 9 (석암리 9호분 출토 금제띠고리의 제작 방법 고찰)

  • Ro, Jihyun;Yu, Heisun
    • Conservation Science in Museum
    • /
    • v.17
    • /
    • pp.1-16
    • /
    • 2016
  • The gold buckle excavated from Seogam-ri Tomb No. 9(National Treasure No. 189), one of the oldest gold artifacts discovered within the Korean Peninsula, was created using granulation techniques. The buckle is made with 22.8K gold sheets and features a decorative design with seven dragons in repousse metalwork. The outlines of the dragons and the edge of the buckle are finished with 23.8K gold wires and granules. Some curved sections of the buckle are also covered with an extra sheet of 23.8K gold, possibly added to repair defects discovered during production or thereafter. Gold wire used to render the dragon's nostrils is slightly lower in purity(23.3K) and was probably preferred in this case due to its increased hardness. As a result, the metal is better able to retain the complex shape of the dragons' nostrils, created by rolling gold wire into spirals. The buckle's gold granules are found in small, medium and large sizes and are presumed to have been bonded using copper. The foreheads and the bodies of the seven dragons are inset with turquoise and the eyes are decorated with red cinnabar/vermillion(HgS).

WELD REPAIR OF GAS TURBINE HOT END COMPONENTS

  • Chaturvedi, M.C.;Yu, X.H.;Richards, N.L.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.235-243
    • /
    • 2002
  • Ni-base superalloys are used extensively in industry, both in aeroengines and land based turbines. About 60% by weight of most modern gas turbine engine structural components are made of Ni-base superalloys. To satisfy practical demands, the efficiency of gas turbine engines has been steadily and systematically increased by design modifications to handle higher turbine inlet or firing temperatures. However, the increase in operating temperatures has lead to a decrease in the life of components and increase in costs of replacement. Moreover, around 80% of the large frame size industrial/utility gas turbines operating in the world today were installed in the mid-sixties to early seventies and are now 25 to 30 years old. Consequently, there are greater opportunities now to repair and refurbish the older models. Basically, there are two major factors influencing the weldability of the cast alloys: strain-age cracking and liquation cracking. Susceptibility to strain-age cracking is due to the total Ti plus AI content of the alloy; Liquation cracking is due either to the presence of low melting constituents or constitutional liquation of constituents. Though Rene 41 superalloy has 4.5wt.% total Ti and Al content and falls just below the safe limit proposed by Prager et al., controlled grain size and special heat treatments are needed to obtain crack-free welds. Varying heat treatments and filler materials were used in a laboratory study, then the actual welding of service parts was carried out to verity the possibility of crack-tree weld of components fabricated from Rene 41 superalloy. The microstructural observations indicated that there were two kinds of carbides in the FCC matrix. MC carbides were located along the grain boundaries, while M$_{23}$C$_{6}$ carbide was located both inter and intra granularly. Two kinds of filler materials, Rene 41 and Hastelloy X were used to gas tungsten arc weld a patch into the sheet metal, along with varying pre-weld heat treatments. The microstructure, hardness and tensile tests were determined. The service distressed parts were categorized into three classes: with large cracks, with medium cracks and with small or no visible cracks. No significant difference in microstructure among the specimens was observed. Specimens were cut from the corner and the straight edge of the patch repair, away from the corner. The only cracks present were found to be associated with inadequate surface preparation to remove oxidation. Guidelines for oxide removal and the welding procedures developed in the research enabled crack-free welds to be produced.d.

  • PDF

Fracture Mechanics Approach to X-Ray Diffraction Method for Spot Welded Lap Joint Structure of Rolled Steel Considered Residual Stress (잔류응력을 고려한 압연강 용접구조물의 X-ray 회절법에 의한 파괴 역학적 고찰)

  • Baek, Seung-Yeb;Bae, Dong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1179-1185
    • /
    • 2011
  • Cold and hot-rolled carbon steel sheets are commonly used in railroad cars or commercial vehicles such as the automobile. The sheets used in these applications are mainly fabricated by spot welding, which is a type of electric resistance welding. However, the fatigue strength of a spot-welded joint is lower than that of the base metal because of high stress concentration at the nugget edge of the spot-welded part. In particular, the fatigue strength of the joint is influenced by not only geometrical and mechanical factors but also the welding conditions for the spot-welded joint. Therefore, there is a need for establishing a reasonable criterion for a long-life design for spot-welded structures. In this thesis, ${\Delta}P-N_f$ relation curves have been used to determine a long-life fatigue-design criterion for thin-sheet structures. However, as these curves vary under the influence of welding conditions, mechanical conditions, geometrical factors, etc. It is very difficult to systematically determine a fatigue-design criterion on the basis of these curves. Therefore, in order to eliminate such problems, the welding residual stresses generated during welding and the stress distributions around the weld generated by external forces were numerically and experimentally analyzed on the basis of the results, reassessed fatigue strength of gas welded joints.

A study on excavator front support parts to minimize springback defects (굴삭기 Front Support 부품 뒤틀림 결함 최소화 방안 도출)

  • Jeon, Yong-Jun;Heo, Young-Moo;Lee, Ha-Sung;Kim, Dong-Earn
    • Design & Manufacturing
    • /
    • v.12 no.2
    • /
    • pp.40-45
    • /
    • 2018
  • Recently, in construction equipment machinery production, development has focused on environmentally-friendly functions to improve existing production capacity. For excavators as well, emphasis has been placed on response to environmental regulations, miniaturization, and noise reduction, while technology is being developed considering cost reduction and safety.Accordingly, the front support, an inner reinforcement part of the excavator, as well as high-strength steel plates to improve safety and reduce weight, are being applied.However, in the case of high-strength materials, Springback occurs in the final formed part due to high residual stress during product forming. Derivation of a forming or product shaping process to reduce springback is needed. Accordingly, regarding the front support, an inner reinforcement part of the excavator, this study derived a method to improve springback and secure shape stiffness through analysis of the springback occurrence rate and springback causes through a forming analysis.As for the results of analyzing the springback occurrence rate of existing products through forming analysis, springback of -22.6 mm < z < 27.35 mm occurred on the z-axis, and it was confirmed that springback occurred due to the stiffness reinforcing bead of the upper and middle parts of the product.To control product residual stress and springback, we confirmed a tendency of springback reduction through local pre-cutting and stiffness reinforcement bead relocation.In the local pre-cutting model, springback was slightly reduced by 5.3% compared with the existing model, an insignificant reduction effect. In the stiffness reinforcement bead relocation model, when an X-shaped stiffness reinforcement bead was added to each corner portion of the product, springback was reduced by at least 80%.The X-shaped bead addition model was selected as the springback reduction model, and the level of stiffness compared to the existing model was confirmed through a structural analysis.The X-shaped bead additional model showed a stress springback of 90% and springback reduction of 7.4% compared with the existing model, indicating that springback and stiffness will be reinforced.

A study on reduction of springback defects in excavator tank cover part (굴삭기 Tank Cover 부품 뒤틀림 불량 저감에 대한 연구)

  • Jeon, Yong-Jun;Lee, Ha-Sung;Kim, Dong-Earn;Heo, Young-Moo
    • Design & Manufacturing
    • /
    • v.12 no.1
    • /
    • pp.52-57
    • /
    • 2018
  • With the recent strengthening of environmental regulations and the need for cost reduction, excavators, a type of construction equipment, are being miniaturized while components are being developed in consideration of stability. In the case of excavator press parts, mainly high-strength steel sheets are being used to enhance stability and reduce weight. However, in the case of high-strength materials, there is a need to research product forming methods to reduce Springback in defects arising in parts assembly due to Springback that result from the internal residual stress that occurs in press forming being released after product forming. Accordingly, regarding the tank cover, an excavator press-forming part, this study selected a method to reduce distortion through analysis of the Springback occurrence rate and Springback causes through a forming analysis. A forming analysis was conducted for the Springback of the tank cover. Deformations of 13.714 mm in the upper part and 6.244 mm in the inner part of the product occurred, while wrinkles occurred on the sides of the product due to uneven thickness. A forming analysis was conducted for the major shapes of the product to investigate the causes of Springback. Distortion deformation due to the bead in the center of the product was confirmed to be a large factor. A Springback reduction method of correcting uneven thickness in the product sides, a Springback reduction method of removing the bead, and a correction method of restriking after the final forming were used in a forming analysis to determine the degree of Springback reduction. For the forming method to correct uneven thickness in the sides, deformation was reduced by 12% in the upper side compared to the existing model, but deformation in the inner side increased by 1%. For the restriking forming method, deformation decreased by 25% in the upper side and 13% in the inner side. For the bead removal method, deformation decreased by 28% in the upper side and 13% in the inner side, the largest Springback correction results. This indicates that the bead has a large affect on Springback.

Re-conservation of the Iron Sword with Ring Pommel with Three-Pointed Leaf Decoration Excavated from Tomb No. 55 at the Dalseong Ancient Tomb Complex in Daegu and a Study of Its Production Method (대구 달성 55호분 출토 삼엽문이자태도의 재보존처리와 제작 기법 연구)

  • Lee, Huisung;Huh, Ilkwon;Ro, Jihyun;Park, Seungwon
    • Conservation Science in Museum
    • /
    • v.24
    • /
    • pp.1-16
    • /
    • 2020
  • This paper presents the process of re-conservation and the results of research on the production method of the Iron Sword with Ring Pommel with Three-Pointed Leaf Decoration, one of the excavation findings from Tomb No. 55 in the Dalseong Ancient Tomb Complex in Daegu. This iron sword is a double weapon with two large swords housed within a single sheath. Four smaller swords are attached to the surface of the sheath, two on the upper portion and the other two below. It is the only such two-in-one weapon excavated intact thus far from an ancient Korean tomb. The records show that it underwent conservation treatment twice in the past. In this study, it was subjected to conservation treatment again to replace the stiffener in some cracking areas, and its material, composition, and production method were analyzed by CT, XRF analysis, and stereoscopic microscopy. The sword is mainly made of copper, but the golden component contains both gold and mercury, which suggests that the copper was plated in gold using mercury amalgamation. The examination of the production methods indicates that it was intended more to demonstrate the authority of its owner rather than to serve any practical use. The two upper small swords on the sheath were made in the same manner as the main swords, and the two small lower swords were cut from a single metal sheet. The sheath was made by cutting two metal sheets. Supports were used to attach the two small swords to the upper portion of the sheath, while the lower portion of the sheath was slit to allow the other two small swords to be inserted into it. The ring pommels of the main swords have a three-pointed leaf decoration. As for the other designs, the handle of the main sword features a series of semicircles, the decorative bands on the sheath have waves in dots, and the fish tail of the sheath shows diagonal lines of dots.

Study on the Small Grain Bin for the Improvement of Grain Drying and Storage (곡물건조저장법 개선을 위한 농가용 Grain Bin에 관한 연구)

  • 김성래
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.1
    • /
    • pp.3263-3291
    • /
    • 1974
  • Experimental work of grain bin was carried out to develop the methods of natural air in-bin drying and storage. The method is considered to be more economical, labour saving, and an effective countermeasure to grain loss. To examine the possibility of farm use of the grain bin and to analyze the related factors concerned with in-bin grain drying and storage, ambient air conditions (especially the change of air temperature and relative humidity) and grain quality during drying and storage periods were investigated. A laboratory model bin was constructed to investigate the effect of different forced air conditions on the drying characteristics of rice. In addition, a grain bin with 2.2m diameter and 1.8m height, considered to be the optimum size for the average Korean farm, was constructed and tested to examine the drying and storing characteristics of rice. The weather data analyzed in this study was the nine-year (from 1964 to 1972) record of air temperature and relative humidity in the Suweon area, and the thirty-year (from 1931 to 1960) record of pentad normal relative humidity and air temperature in the Seoul area. From the results of the weather data analyses, the adequate air delivery hours (which was arbitrary defined as the condition to give less than 75% relative humidity) to dry the rice during October were about nine hours (from approximately 10 A.M. to 7 P.M, ) a day, in which the average air temperature was about 15.9$^{\circ}C$ and average relative humidity was 66%. The occurence of days having three hours of such conditions was 1, 2, and 1-day within the 1st, 2nd add last 10-day periods for the month of October, respectively. Therefore, it may be considered that the weather condition in October was satisfactory for the forced natural air drying. The results of the laboratory model bin test were analyzed to obtain the drying curve and drying rate for different drying stages and grain layers in the bin corresponding to various conditions of forced natural air. A drying experiment with a prototype grain bin showed that an approximate 5 percent grain moisture gradient through a 1.6 meter grain deposit was observed after 80 hours of intermittent drying, giving an over dried zone in the lower grain layers and an extremely high grain moisture zone in the upper layers. This indicates that an effective measure should be taken to reduce this high moisture gradient. In order to investigate the drying characteristics of bulk grain in a layerturning operation a grain bin test was performed. This showed a significant improvement of uniform drying. In this test, approximate 107 hours were required to dry a depth of 1.6 meter of grain from an initial moisture content of 22.2 percent to a moisture content of 16.7 percent using an air delivery rate of 2.8 cubic meter per a minute per every cubic meter of grain. This resulted in a 2 percent moisture gradient from the top to the bottom of the bin. During storage period, till the end of June the average temperature of grain was 2~3$^{\circ}C$ higher than ambient air temperature. But during July when the grain moisture content went up slightly (less than 1 percent), the average temperature of the grain also increased to 3~5$^{\circ}C$ higher than ambient air temperature. It is therefore recommended that for safe grain storage, grain should not be stored in sheet metal bins after mid May. From the above results, in-bin rice drying and storage can be used effectively on Korean farms. It is strongly recommended that the use of grain-bin system should be implemented for farm use to improve farm drying and storage of rice.

  • PDF

A bilayer diffusion barrier of atomic layer deposited (ALD)-Ru/ALD-TaCN for direct plating of Cu

  • Kim, Soo-Hyun;Yim, Sung-Soo;Lee, Do-Joong;Kim, Ki-Su;Kim, Hyun-Mi;Kim, Ki-Bum;Sohn, Hyun-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.239-240
    • /
    • 2008
  • As semiconductor devices are scaled down for better performance and more functionality, the Cu-based interconnects suffer from the increase of the resistivity of the Cu wires. The resistivity increase, which is attributed to the electron scattering from grain boundaries and interfaces, needs to be addressed in order to further scale down semiconductor devices [1]. The increase in the resistivity of the interconnect can be alleviated by increasing the grain size of electroplating (EP)-Cu or by modifying the Cu surface [1]. Another possible solution is to maximize the portion of the EP-Cu volume in the vias or damascene structures with the conformal diffusion barrier and seed layer by optimizing their deposition processes during Cu interconnect fabrication, which are currently ionized physical vapor deposition (IPVD)-based Ta/TaN bilayer and IPVD-Cu, respectively. The use of in-situ etching, during IPVD of the barrier or the seed layer, has been effective in enlarging the trench volume where the Cu is filled, resulting in improved reliability and performance of the Cu-based interconnect. However, the application of IPVD technology is expected to be limited eventually because of poor sidewall step coverage and the narrow top part of the damascene structures. Recently, Ru has been suggested as a diffusion barrier that is compatible with the direct plating of Cu [2-3]. A single-layer diffusion barrier for the direct plating of Cu is desirable to optimize the resistance of the Cu interconnects because it eliminates the Cu-seed layer. However, previous studies have shown that the Ru by itself is not a suitable diffusion barrier for Cu metallization [4-6]. Thus, the diffusion barrier performance of the Ru film should be improved in order for it to be successfully incorporated as a seed layer/barrier layer for the direct plating of Cu. The improvement of its barrier performance, by modifying the Ru microstructure from columnar to amorphous (by incorporating the N into Ru during PVD), has been previously reported [7]. Another approach for improving the barrier performance of the Ru film is to use Ru as a just seed layer and combine it with superior materials to function as a diffusion barrier against the Cu. A RulTaN bilayer prepared by PVD has recently been suggested as a seed layer/diffusion barrier for Cu. This bilayer was stable between the Cu and Si after annealing at $700^{\circ}C$ for I min [8]. Although these reports dealt with the possible applications of Ru for Cu metallization, cases where the Ru film was prepared by atomic layer deposition (ALD) have not been identified. These are important because of ALD's excellent conformality. In this study, a bilayer diffusion barrier of Ru/TaCN prepared by ALD was investigated. As the addition of the third element into the transition metal nitride disrupts the crystal lattice and leads to the formation of a stable ternary amorphous material, as indicated by Nicolet [9], ALD-TaCN is expected to improve the diffusion barrier performance of the ALD-Ru against Cu. Ru was deposited by a sequential supply of bis(ethylcyclopentadienyl)ruthenium [Ru$(EtCp)_2$] and $NH_3$plasma and TaCN by a sequential supply of $(NEt_2)_3Ta=Nbu^t$ (tert-butylimido-trisdiethylamido-tantalum, TBTDET) and $H_2$ plasma. Sheet resistance measurements, X-ray diffractometry (XRD), and Auger electron spectroscopy (AES) analysis showed that the bilayer diffusion barriers of ALD-Ru (12 nm)/ALD-TaCN (2 nm) and ALD-Ru (4nm)/ALD-TaCN (2 nm) prevented the Cu diffusion up to annealing temperatures of 600 and $550^{\circ}C$ for 30 min, respectively. This is found to be due to the excellent diffusion barrier performance of the ALD-TaCN film against the Cu, due to it having an amorphous structure. A 5-nm-thick ALD-TaCN film was even stable up to annealing at $650^{\circ}C$ between Cu and Si. Transmission electron microscopy (TEM) investigation combined with energy dispersive spectroscopy (EDS) analysis revealed that the ALD-Ru/ALD-TaCN diffusion barrier failed by the Cu diffusion through the bilayer into the Si substrate. This is due to the ALD-TaCN interlayer preventing the interfacial reaction between the Ru and Si.

  • PDF

Assessment of Natural Radiation Exposure by Means of Gamma-Ray Spectrometry and Thermoluminescence Dosimetry (감마선분광분석(線分光分析) 및 열형광검출법(熱螢光檢出法)에 의한 자연방사선(自然放射線)의 선량측정연구(線量測定硏究))

  • Jun, Jae-Shik;Oh, Hi-Peel;Choi, Chul-Kyu;Oh, Heon-Jin;Ha, Chung-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.10 no.2
    • /
    • pp.96-108
    • /
    • 1985
  • A study for the assessment of natural environmental radiation exposure at a flat and open field of about $10,000m^2$ in area in CNU Daeduk campus has been carried out by means of gamma-ray scintillation spectrometry and thermoluminescence dosimetry for one year period of time from October 1984. The detectors used were 3'${\phi}{\times}$3' NaI(T1) and two different types of LiF TLD, namely, chip sealed in plastic sheet which tightly pressed on two open holes of a metal plate and Teflon disk. Three 24-hour cycles of in-situ spectrometry, and two 3-month and one 1-month cycles of field TL dosimetry were performed. All the spectra measured were converted into exposure rate by means of G(E) opertaion, and therefrom exposure rate due to terrestrial component of environmental radiation was figured out. Exposure rate determined by the spectrometry was, on average, $(10.54{\pm}2.96){\mu}R/hr$, and the rates of $(12.0{\pm}3.4){\mu}R/hr$ and $(11.0{\pm}3.6){\mu}R/hr$ were obtained from chip and disk TLD, respectively. Fluctuations in diurnal variation of the exposure rate measured by the spectrometry were noticeable sometime even in a single cycle of 24 hours. It is concluded that appropriately combined use of TLD with iu-sitn gamma-ray spectrometry system can give more accurate and precise measure of environmental radiation exposure, and further study for more adequate and sensitive TLD for environmental dosimetry, including improvement and elevation of accuracy in data assessment through inter-laboratory or international intercomparison is necessary.

  • PDF