• Title/Summary/Keyword: Sheet Model

Search Result 794, Processing Time 0.023 seconds

The Development and Application of Sheet Metal Forming Technology (박판성형기술의 개발과 적용)

  • 박춘달;이장희;양동열;허훈;정동원
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.06a
    • /
    • pp.147-162
    • /
    • 1994
  • Generally, the forming process of sheet metal is very complex and difficult process because of many variables such as tool geometry, material properties and lubrication. In this view point, the numerical analysis of sheet metal forming process is very difficult. High speed computer is used to model complex sheet metal forming process on a reasonable time scale. The design and development of sheet metal parts in the automotive industry and the need for improved sheet forming process and reduced part development cost have led to the use of computer simulation in tool/die design of sheet metal pressing. HMC(Hyundai Mator Company) has invested to develop programs for analysis of sheet metal forming process with connection of Universities. As a result, several programs were developed. Recently, the commercial software, PAM-STAMP of ESI was installed and is being tried to application of it to the real automotive panels. This article reviews the ongoing activities on development and application of analytical modeling of sheet metal forming at HMC.

Development of Analysis Method for Forming of Sandwich Sheet with Pyramid Core (피라미드 코어를 가진 샌드위치 판재의 성형해석기술 개발)

  • Lim, S.J.;Kim, J.H.;Seong, Dae-Yong;Yang, Dong-Yeol;Chung, W.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.266-267
    • /
    • 2007
  • Sandwich sheet with inner structure is expected to find many applications because of high stiffness to mass ratio. In order to simulate forming of sandwich sheet with pyramid core, an effective simulation method is required. Compared to the expensive model using solid elements, cost effective model using simplified elements such as shells and beams is developed. By comparing two models in terms of the cost and accuracy for unit cell deformation, a developed model shows some advantages over the model using solid elements. Evolution of two kind of forming limits, face buckling and core buckling are successfully expressed by developed model. Developed model is also applied in the simulation of square cup drawing and L-type bending. The corresponding experiments are carried out. Deformation shape and wrinkling behavior are compared and discussed. It is found that simulation results using a developed model are in good agreement with experiments.

  • PDF

Dynamic Materials Model-Based Study on the Formability of Bulk Metallic Glass Sheets (동적재료모델에 의한 벌크 비정질 금속의 판재성형성에 대한 고찰)

  • 방원규;이광석;안상호;장영원
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.173-176
    • /
    • 2002
  • Viscoplastic deformation and sheet forming behavior of multicomponent Zr-based bulk metallic glass alloy has been investigated. From a series of mechanical test results, basic processing maps based on Dynamic Materials Model have been constructed to establish feasible forming conditions. Stamping in laboratory scale was then performed at the various stroke speeds and temperatures using a hydraulic press. Failure in macroscopic level was examined to check the validity of constructed processing maps.

  • PDF

Development of CAD/CAM system for dieless CNC forming (Dieless CNC Forming 을 위한 CAD/CAM 시스템 개발)

  • 최동우;진영길;강재관;왕덕현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.405-408
    • /
    • 2004
  • The sheet parts are formed with dies conventionally. But this conventional forming process is not suited to small volume and varied production for the reason of high cost. For the solution of this problem, a new forming process, which is called CNC incremental sheet forming, is being introduced. This process can form sheet parts without die, and is very well suited to small volume and varied production in space flight and automobile. In this paper, dieless CNC forming system based on a machining center is developed. A special device to grasp and pull the blank sheet built in the machining center and tool path generation S/W from STL file of 3-D model are developed. Several sheet parts are incrementally formed to verify the effectiveness of the developed system.

  • PDF

The Evaluation of the Fracture Criterion having an Effect on Crack Extension Simulation for a Thin Sheet (박판시험편의 균열성장 시물레이션에 미치는 파괴기준 평가)

  • 권오헌
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.15-19
    • /
    • 2000
  • The exact estimation of the ductile crack growth in a thin sheet would be needed in part of the commercial transport aircraft industry fields. A 2-dimensional elastic plastic finite element analysis was carried out to simulate a stable crack extension in a thin sheet 2024 aluminium alloy. Two kinds of crack modeling were used to evaluate curves of the stable crack extension. And then CTOA(crack tip opening angle) and CTED(crack tip energy density) were calculated in order to determine whether they can be used as useful crack extension criterions in a thin sheet. Results indicate that stable crack extension behaviors were simulated well and CTED is more admirable even though CTOA also is reasonable as a criterion for a stable crack extension in a thin 2024 aluminium alloy sheet.

  • PDF

Dieless CNC Forming System based on a Machining Center (머시닝센터 기반의 Dieless CNC Forming 시스템 개발)

  • Choi D. W.;Kang J. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.184-187
    • /
    • 2004
  • The sheet parts are formed with dies conventionally. But this conventional forming process is not suited to small volume and varied production for the reason of high cost. For the solution of this problem, a new forming process, which is called CNC incremental sheet forming, is being introduced. This process can form sheet parts without die, and is very well suited to small volume and varied production in space flight and automobile. In this paper, dieless CNC forming system based on a machining center is developed. A special device to grasp and pull the blank sheet built in the machining center and tool path generation S/W from STL file of 3-D model are developed. Several sheet parts are incrementally formed to verify the effectiveness of the developed system.

  • PDF

Study on the Yield Locus of Aluminum alloy sheet Using Biaxial Cruciform Specimens (2축 십자형 시편을 이용한 알루미늄 합금 판재의 항복곡면에 대한 연구)

  • Shin, H.D.;Park, J.G.;Park, C.D.;Ro, H.C.;Youn, K.T.;Lim, H.T.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.164-167
    • /
    • 2009
  • The applications of the aluminum alloy sheets to the auto-body panels are dramatically increasing for weight reduction of the automobiles. However, low formability of the aluminum alloy sheet compare to the steel sheet can be obstacles in tool manufacturing process. Therefore, much of yield criteria for the anisotropic material such as the aluminum alloy sheet have been observed. In this study, the biaxial tensile test and FLD test for the aluminum alloy sheet are performed. The results are compared with Hill's 1948 and Hill's 1990 model by means of theoretical predictions. Finite element analysis also performed using the proposed method for the real panel.

  • PDF

A Study on the Springback of Sheet Characteristics for Roll forming Analsys (판재 특성에 따른 롤 성형 해석시 스프링백 연구)

  • Jung, J.H.;Lee, Y.S.;Kwon, Y.N.;Lee, J.H.;Son, S.M.;Lee, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.300-301
    • /
    • 2007
  • In this study, it is investigated that sheet characteristics of high strength steel sheets and effect of springback. High strength steel sheets has got attention in automobile industry of high strength and high formability. Springback is a common phenomenon in sheet metal forming, caused by the elastic recovery of the internal stresses after removal of the tooling. However, the information in deformation behavior of high strength steel sheets, including bending and sheet characteristics and springback, is not enough until now. In this research, the V-bending experiment and analysis have been done to obtain the information of springback of high strength steel sheets. Tensile test for high strength steel sheets was done to got tensile properties of elastic modulus and flow stress of the material. It analyzed springback according to the sheet characteristics with using roll-forming model. FE-Simulation used DEFORM-$3D^{TM}$.

  • PDF

Development of Drawbead Expert Models for Finite Element Analysis of Sheet Metal Forming Processes(Part 2:Modeling) (박판성형공정의 유한요소해석을 위한 드로우비드 전문모델 개발(2부: 모델링))

  • Keum, Yeong-Tak;Lee, Jae-U
    • Transactions of Materials Processing
    • /
    • v.7 no.1
    • /
    • pp.12-22
    • /
    • 1998
  • An expert drawbead model is developed for the finite element analysis of stamping processes. The expert model calculates drawbead restraining forces and bead-exit thinnings with the forming condi-tions and drawbead size. The drawbead restraining forces and bead-exit thinnings of a circular draw-bead and stepped drawbead are computed by mathematical models and corrected by the multiple lin-ear regression method based on experimental measurements. The squared drawbead preventing the sheet from drawing-in inside die cavity is assumed to have a very huge drawbead restraining force and no pre-strain just after drawbead. The combined beads are considered as a combination of basic draw-beads such as circular a drawbead stepped drawbead and squared drawbead so that the drawbead restraining forces and bead-exit thinnigs are basically sum of those of basic drawbeads.

  • PDF

One-dimensional modeling of flat sheet casting or rectangular Fiber spinning process and the effect of normal stresses

  • Kwon, Youngdon
    • Korea-Australia Rheology Journal
    • /
    • v.11 no.3
    • /
    • pp.225-232
    • /
    • 1999
  • This study presents 1-dimensional simple model for sheet casting or rectangular fiber spinning process. In order to achieve this goal, we introduce the concept of force flux balance at the die exit, which assigns for the extensional flow outside the die the initial condition containing the information of shear flow history inside the die. With the Leonov constitutive equation that predicts non-vanishing second normal stress difference in shear flow, we are able to describe the anisotropic swelling behavior of the extrudate at least qualitatively. In other words, the negative value of the second normal stress difference causes thickness swelling much higher than width of extrudate. This result implies the importance of choosing the rheological model in the analysis of polymer processing operations, since the constitutive equation with the vanishing second normal stress difference is shown to exhibit the characteristic of isotropic swelling, that is, the thickness swell ratio always equal to the ratio in width direction.

  • PDF