• Title/Summary/Keyword: Sheet Metal Forming Process

Search Result 428, Processing Time 0.024 seconds

Experimental Study on the Parameters Affect Cylindrical Cup Drawing Process (원형컵 드로잉 공정에 미치는 영향인지에 관한 실험적 연구)

  • 정동원;양경부;김광희
    • Transactions of Materials Processing
    • /
    • v.8 no.5
    • /
    • pp.449-453
    • /
    • 1999
  • Sheet metal forming process is a non-linearity problem which is affected by various process variables, such as geometric shape of punch and die, frictional characteristic, etc.. Therefore, the knowledge of the influence of the process variables is needed in the design of sheet metal working processes. In this paper, cylindrical cup drawing tests for blank holding force, punch speed and lubrication between sheet material and tool were carried out to investigate the influence upon sheet formability. Experimental results were discussed about the defects on the deformation behaviors during the forming process.

  • PDF

A Study on the Forming Process of High-strength Aluminum Sheet for Electric Vehicle Heat Exchanger Separator Through Parametric Analysis (인자 분석을 통한 전기차 열교환기 분리판용 고강도 알루미늄 판재 성형 연구)

  • Jung, S.H.;Yang, J.H.;Kim, Y.B.;Lee, K.J.;Kim, B.H.;Lee, J.S.;Bae, G.H.
    • Transactions of Materials Processing
    • /
    • v.31 no.2
    • /
    • pp.57-63
    • /
    • 2022
  • The current study performed formability analysis of a heat exchanger separator for an electric vehicle to apply a high-strength aluminum sheet based on parametric analysis. Mechanical properties for sheet metal forming simulation were evaluated by tensile test, bulge test, and Nakajima test. Two-stage crash forming was established by considering the mass production process using conventional low-strength aluminum sheets. In this study, FEM for the two-stage forming process was conducted to optimize the corner radius and height for improving the formability. In addition, the possibility of a one-stage forming process application was confirmed through FEM. The prototype of the sample was manufactured as FEM results to validate the parametric analysis. Finally, this result can provide a one-stage forming process design method using the high-strength aluminum sheet for weight reduction of a heat exchanger separator for an electric vehicle.

A Study on the Intial Blank Design Using Ideal Forming Theory (이상적 변형이론을 이용한 박판 초기형상 설계에 관한 연구)

  • 박상후;윤정환;양동열;김용환;이장희
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.207-218
    • /
    • 1997
  • A new blank design method is introduced to predict the blank shape and the strain distribution in the sheet metal forming process. This method deals with only one step from the final shape to the initial blank using the ideal forming theory. Based on this theory, a three-dimensional membrane finite element code has been developed to design an initial blank in the sheet metal forming process. In this paper, the designs of initial blanks for forming a cylindrical cup, a rectangular cup, and a front fender are presented as examples. Also, it compares the two shapes, the target shape with the shape which is deformed from the initial blank using the FEM analysis code. The results illustrate the information that this direct design code is useful in the preliminary design state.

  • PDF

The Effect of the Drawbead Shape on the Sheet Metal Forming Process (드로우비드 형상에 따른 박판 성형공정에 미치는 영향에 관한 연구)

  • Jeong, Dong-Won;Lee, Sang-Je
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1624-1632
    • /
    • 2000
  • In the sheet metal forming process, the drawbead is used to control the flow of material during the forming process. The drawbead provides proper restraining force to the material and prevents defe cts such as wrinkling or breakage. For these reasons, many studies for designing the effective drawbead have been conducted. In this paper, the effect of the drawbead shape will be introduced. For the analysis, the numerical method called the static-explicit finite element method was used. The finite element analysis code for this method has been developed and applied to the drawbead process problems. In result, convergence problem and computation time due to large non-linearity in the existing numerical analysis methods were no longer a critical problem. Futhermore, this approach could treat the contact friction problem easily by applying very small time intervals. It is expected that various results from the numerical analysis will give very useful information for the design of tools in sheet metal forming process.

Robust Design of Springback in Sheet Metal Forming (박판 성형 공정에서 스프링백의 강건 설계)

  • Kim, Kyung-Mo;Yin, Jeong-Je
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.2
    • /
    • pp.41-48
    • /
    • 2013
  • Springback is a very typical dimensional discrepancy phenomenon, which occurs usually on the final stamping parts after the tool loading is removed. Variation of springback leads to amplified variations and problems during assembly of the stamped components, in turn, resulting in quality issues. The variations in the properties of the incoming material and process parameters are the main causes of springback variation. In this research, a robust design methodology which combines orthogonal array based experimental design and design space reduction skim to reduce the springback variation for advanced high strength steel parts in sheet metal forming is suggested. The concept of design space reduction is adapted in the experimental design setup to improve the quality of the obtained solution. The effectiveness of the proposed procedures is illustrated through a robust design of springback in metal forming process of a cross member of auto body.

A Study on Development of Automotive Panel of Bumper Reinforcement with High Strength Steel Using Roll Forming Process (롤포밍 공정을 이용한 고장력강 재질의 범퍼보강 차체판넬 개발에 관한 연구)

  • Jung, Dong-Won;Kim, Dong-Hong;Kim, Bong-Chun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.840-844
    • /
    • 2012
  • Roll forming process is a sheet metal forming process where the forming occurs with rolls in several steps, often from an undeformed sheet to a product ready to use. And each pair of forming rolls installed in a forming machine operates a particular role in making up the required final cross-section. This process used to many industry manufactures and recently apply to automotive industry. This study, FEM simulation applied bumper reinforcement using SHAPE-RF software and analyzed about total effective strain, longitudinal strain, thickness according to the roll-pass.

The Analysis of Draw-bead Process by Using Static-explicit Finite Element Method (정적 외연적 유한요소법을 이용한 비드공정해석)

  • Jung, Dong-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.604-609
    • /
    • 2001
  • In the sheet metal forming process, the drawbead is used to control the flow of material during the forming process. The drawbead provides proper restraining force to the material and prevents defects such as wrinkling or breakage. For these reasons, many studies for designing the effective drawbead have been conducted. For the analysis, the numerical method called the static-explicit finite element method was used. The finite element analysis code for this method has been developed and applied to the drawbead process problems. In result, convergence problem and computation time due to large non-linearity in the existing numerical analysis methods were no longer a critical problem. Futhermore, this approach could treat the contact friction problem easily by applying very small time intervals. It is expected that various results from the numerical analysis will give very useful information for the design of tools in sheet metal forming process.

  • PDF

Springback Analysis in the Anisotropic Sheet Metal Forming Process with Axisymmetric Tools (이방성 금속판재 성형공정에서 블랭크 가압력에 따른 스프링백 해석)

  • 강정진;허영무;홍석관;송경식
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.389-392
    • /
    • 2003
  • The deterioration of dimensional accuracy, caused by springback, is one of problems to always occur in sheet metal forming processes. As the demand for lighter and stronger metals increases, the development of improved forming processes settling the springback problem becomes more important. In this work, springback phenomena are investigated which occur in the press forming process with the anisotropic sheet metal and axisymmetric tools. The improvement possibility of dimensional accuracies, mainly, flatness, will be examined by applying blank holding forces as a method of springback control.

  • PDF

Rigid-Plastic Finite Element Analysis of Anisotropic Sheet Metal Forming Processes by using Continuum Elements (연속체요소를 이용한 이방성 박판재료 성형공정의 강소성 유한요소해석)

  • 이동우;양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.24-27
    • /
    • 1997
  • In the present work, rigid-plastic continuum elements employing the shape change and anisotropic effects are derived for the purpose of applying more realistic blankholding force condition in three-dimensional finite element analysis of sheet metal forming process. In order to incorporate the effect of shape change effectively in the derivation of finite element equation using continuum element for sheet metal forming, the convected coordinate system is introduced, rendering the analysis more rigorous and accurate. The formulation is extended to cover the orthotropic material using Hill's quadratic yield function. For the purpose of applying more realistic blankholding force condition, distributed normal and associated frictional tangent forces are employed in the blankholder, which is pressed normal and associated frictional tangent forces are employed in the blankholder, which is pressed against the flange until the resultant contact force with the blank reaches the prescribed value. As an example of sheet metal forming process coupling the effect of planar anisotropy and that of blankholding boundary condition, circular cup deep drawing has been analyzed considering both effects together.

  • PDF

A Study on Improvement of Bending Quality of Hemmed Plates in Sheet Metal Forming (헤밍 (Hemming) 구조를 가진 박판의 굽힘품질 개선에 관한 연구)

  • Kim, Pan Gun;Park, Sang Hu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.12
    • /
    • pp.1360-1367
    • /
    • 2012
  • A bending process is considered as one of fundamental sheet metal forming processes, and it is widely used for fabrication of simple or complicated sheet metal products in industrial fields. Most of automobiles and electronics have many parts made by the bending process inside or outside of them. However, till now, there is few research reports on the bending process of hemmed plates. A hemmed plate has a locally different bending strength, so a waving shape occurs after bending. A poor outlook due to local uneven shape influences greatly on product competitiveness. To settle this problem, we studied the bending parameters of a hemmed plate and showed the major sensitive design-parameters on the bending quality.