• Title/Summary/Keyword: Sheet Beam

Search Result 370, Processing Time 0.031 seconds

Development of DHLT Joint for Vertical Cutoff Walls in Offshore Waste Landfill Site (해상처분장 연직차수공을 위한 DHLT 이음부의 개발)

  • Hong, Young-Ho;Lee, Jong-Sub;Lee, Dongsoo;Chae, Kwang-Seok;Yu, Jung-Doung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.3
    • /
    • pp.43-56
    • /
    • 2018
  • Vertical cutoff walls such as steel pipe sheet piles (SPSPs) have been commonly applied for the construction of the offshore waste landfill site. Because the SPSPs are sequentially installed by connecting their joints to those of adjacent piles, their mechanical stability should be ensured against the inherent external forces on the sea. The objective of this study is to evaluate the structural performances of the newly developed types of SPSP joint compared with those of other joint types. The problems of the traditional SPSP joints are investigated, and an advanced joint shape of SPSP, which is named double H with L-T (DHLT) joint, are designed for improving the constructability and maintenance. Full-scale models of the DHLT joint are manufactured, and then its joint areas are filled with grout material. After 28 days of curing time, compressive and tensile strength tests were performed on the joint models and the test results were compared with those of the traditional joints. Experimental results show that the structural capacities of the DHLT joint models are lower than those of traditional joints due to the influence of grout and steel members. In the cases of the compressive strength test, especially, bending occurs on steel H-beam with no distinct cracks in grout due to the asymmetrical structure of joint which has no reaction force. This study shows that the performance of the SPSP joint can be improved by considering the influence factors on the structural capacities estimated by the experimental tests.

Flexural Characteristics of Reinforced Polymer Concrete T-Beams Strengthened with GFRP (GFRP 보강 철근 폴리머 콘크리트 T형 보의 휨 특성)

  • Jin, Nan-Ji;Hwang, Hae-Geun;Yeon, Jung-Heum
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.585-596
    • /
    • 2012
  • In this study, the flexural characteristics of reinforced polymer concrete T-beams strengthened with GFRP, typically used for bridges and parking structures, are investigated. A method to determine the flexural failure mode of reinforced polymer concrete T-beams comprised of compression failure (CF), tension failure (TF), and fiber sheet failure (FF) for different levels of GFRP strengthening is proposed. Moreover, the present study provides a formula to calculate the design flexural strength for each failure mode. In reinforced polymer concrete T-beams strengthened with GFRP, an ideal failure mode can be achieved when the failure occurs in the following order: 1) yield of steel reinforcement, 2) failure of GFRP, and 3) compression failure of concrete. In the case of FF mode, due to GFRP failure before the polymer concrete crushing in compression region, a concept of equivalent rectangular block based on the ultimate limit state of concrete should not be used. Thus, this study suggests an idealized stress-strain curve for polymer concrete and finds parameters for stress block, ${\alpha}$ and ${\beta}$ based on the strain distribution in polymer concrete. Furthermore, the present study suggests an aspect ratio of 2.5 by examining the compressive stress distribution and design flexural strength characteristics for different aspect ratio of T-beams. This study also provides a design flexural strength formula, and validates its acceptability based on experiment and theoretical analysis.

Impact Resistance Evaluation of RC Beams Strengthened with Carbon FRP Sheet and Steel Fiber (CFRP 시트 및 강섬유로 보강된 RC 보의 충격저항 성능 평가)

  • Cho, Seong-Hun;Min, Kyung-Hwan;Kim, Yun-Ji;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.719-725
    • /
    • 2010
  • The analysis and experimental program of reinforced concrete (RC) structures for resistance against such extreme loads as earthquake, blast, and impact have been carried by many researchers and designers. Under the extreme loads, a large amount of energy is suddenly exerted to the structure, hence if the structure fails to absorb the impact energy, catastrophic collapse may occur. To prevent catastrophic collapse of structures, reinforced concrete must have adeguate toughness or it needs to be strengthened. The FRP strengthening method and SFRC are studied widely in resistance of impact load because of their high energy absorption capacity. In this study, drop weight impact tests were implemented to evaluate the impact resistance of SFRC and FRP strengthened RC beam while the total steel fiber volume fractions was fixed at 0.75% carbon FRP flexural strengthened RC beams. Futhermore, to prevent the shear-plug cracks when the impact load strikes the beams, additional FRP shear strengthening method are applied. The experimental, results showed that the FRP strengthened RC SFRC beams has high resistance of shear-plug cracks and crack width and SFRC has high resistance of concrete spalling failure compared to normal RC beams. The FRP flexural and shear strengthening RC beams has weakness in the spalling failure because the impact load concentrated the concrete face which is not strengthened with FRP sheets.

A study on the dose distribution for total-body & hemibody irradiation using clinical photon beams (광자선을 이용한 전신 및 반신조사의 선량분포에 관한 고찰)

  • 김진기;권형철;김정수;오영기;김기환;신교철;김정홍;박충기;정동혁
    • Progress in Medical Physics
    • /
    • v.12 no.2
    • /
    • pp.147-153
    • /
    • 2001
  • We have discussed that the total body irradiation(TBI) dose distribution of 6 and 10 MV photon beams, also differences between calculation dose use of compensator sheet and measurements in humanoid phantom. Total body irradiation and hemi-body irradiation(HBI) can be effectively performed when uniformity of dose distribution is estabilished. The method of TBI and HBI dosimatry requires special considerations related to technique, long distance and very large field, machine parameter, patient positioning. TBI and HBI with megavoltage photon beams requires basic dosimatric data which have to be measured directly or derived from the standard beam data. The semiconductor detector and ion chamber were positioned at a dmax depth, mid depth, and its specific ratio was determined using a scanning data by RFA-7 3-dimensional water phantom and solid phantom. The effective source axis distance 380 cm, the field size from 120 cm to 152 cm, isodose distributions were analyzed as a function of the thickness in phantom. Also, have discussed that the measurement of basic data for clinical photon beams for dosage calculations, data calculation sheet and the use of tissue compensation to improve dose uniformity. We have improved a dose uniformity in the TBI and HBI method.

  • PDF

The Enhancement of Thermal Stability of Nickel Monosilicide by Ir and Co Insertion (Ir과 Co를 첨가한 니켈모노실리사이드의 고온 안정화 연구)

  • Yoon, Ki-Jeong;Song, Oh-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1056-1063
    • /
    • 2006
  • Thermal evaporated 10 nm-Ni/l nm-Ir/(or polycrystalline)p-Si(100) and 10 nm-$Ni_{50}Co_{50}$/(or polycrystalline)p-Si(100) films were thermally annealed using rapid thermal annealing fur 40 sec at $300{\sim}1200^{\circ}C$. The annealed bilayer structure developed into Ni(Ir or Co)Si and resulting changes in sheet resistance, microstructure, phase and composition were investigated using a four-point probe, a scanning electron microscopy, a field ion beam, an X-ray diffractometer and an Auger electron spectroscope. The final thickness of Ir- and Co-inserted nickel silicides on single crystal silicon was approximately 20$\sim$40 nm and maintained its sheet resistance below 20 $\Omega$/sq. after the silicidation annealing at $1000^{\circ}C$. The ones on polysilicon had thickness of 20$\sim$55 nm and remained low resistance up to $850^{\circ}C$. A possible reason fur the improved thermal stability of the silicides formed on single crystal silicon substrate is the role of Ir and Co in preventing $NiSi_2$ transformation. Ir and Co also improved thermal stability of silicides formed on polysilicon substrate, but this enhancement was lessened due to the formation of high resistant phases and also a result of silicon mixing during high temperature diffusion. Ir-inserted nickel silicides showed surface roughness below 3 nm, which is appropriate for nano process. In conclusion, the proposed Ir- and Co- inserted nickel silicides may be superior over the conventional nickel monosilicides due to improved thermal stability.

  • PDF

The improvement of electrical properties of InGaZnO (IGZO)4(IGZO) TFT by treating post-annealing process in different temperatures.

  • Kim, Soon-Jae;Lee, Hoo-Jeong;Yoo, Hee-Jun;Park, Gum-Hee;Kim, Tae-Wook;Roh, Yong-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.169-169
    • /
    • 2010
  • As display industry requires various applications for future display technology, which can guarantees high level of flexibility and transparency on display panel, oxide semiconductor materials are regarded as one of the best candidates. $InGaZnO_4$(IGZO) has gathered much attention as a post-transition metal oxide used in active layer in thin-film transistor. Due to its high mobility fabricated at low temperature fabrication process, which is proper for application to display backplanes and use in flexible and/or transparent electronics. Electrical performance of amorphous oxide semiconductors depends on the resistance of the interface between source/drain metal contact and active layer. It is also affected by sheet resistance on IGZO thin film. Controlling contact/sheet resistance has been a hot issue for improving electrical properties of AOS(Amorphous oxide semiconductor). To overcome this problem, post-annealing has been introduced. In other words, through post-annealing process, saturation mobility, on/off ratio, drain current of the device all increase. In this research, we studied on the relation between device's resistance and post-annealing temperature. So far as many post-annealing effects have been reported, this research especially analyzed the change of electrical properties by increasing post-annealing temperature. We fabricated 6 main samples. After a-IGZO deposition, Samples were post-annealed in 5 different temperatures; as-deposited, $100^{\circ}C$, $200^{\circ}C$, $300^{\circ}C$, $400^{\circ}C$ and $500^{\circ}C$. Metal deposition was done on these samples by using Mo through E-beam evaporation. For analysis, three analysis methods were used; IV-characteristics by probe station, surface roughness by AFM, metal oxidation by FE-SEM. Experimental results say that contact resistance increased because of the metal oxidation on metal contact and rough surface of a-IGZO layer. we can suggest some of the possible solutions to overcome resistance effect for the improvement of TFT electrical performances.

  • PDF

Structural Capacity of RC Beam Retrofitted by CFS with Bond Loss (탄소섬유로 휨보강된 RC 보의 부착 손실에 대한 거동 특성)

  • Seo, Soo-Yeon;Yun, Hyun-Do;Choi, Ki-Bong
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.795-802
    • /
    • 2007
  • Recently, various strengthening methods using carbon fiber sheets (CFS) have been developed for the rehabilitation of structures and applied to the concrete member. However, still research need arises in order to verify the structural capacity of RC member which experienced bond loss between concrete and CFS after strengthening. This is because previous research has focused on the development of design process and evaluation of structural capacity only for retrofit. The appearance of this loss may be initiated at just after retrofit construction. And it will be more serious when the layer number of CFS increases. In order to minimize above mistake in retrofit design using CFS, more exact evaluation process to predict the bond loss of CFS is required. The objective of this research is to study the variation of flexural structural capacity of beam which has experienced bond loss after strengthening using CFS. Experimental and analytical study are performed and evaluation of the previous formula is conducted. Test result showed that the significant strength deterioration was not found until the bond loss of 20%. Overall structural behavior of the beams can be predicted by nonlinear sectional analysis.

Part I Advantages re Applications of Slab type YAG Laser PartII R&D status of All Solid-State Laser in JAPAN

  • Iehisa, Nobuaki
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 1998.11a
    • /
    • pp.0-0
    • /
    • 1998
  • -Part I- As market needs become more various, the production of smaller quantities of a wider variety of products becomes increasingly important. In addition, in order to meet demands for more efficient production, long-term unmanned factory operation is prevailing at a remarkable pace. Within this context, laser machines are gaining increasing popularity for use in applications such as cutting and welding metallic and ceramic materials. FANUC supplies four models of $CO_2$ laser oscillators with laser power ranging from 1.5㎾ to 6㎾ on an OEM basis to machine tool builders. However, FANUC has been requested to produce laser oscillators that allow more compact and lower-cost laser machines to be built. To meet such demands, FANUC has developed six models of Slab type YAG laser oscillators with output power ranging from 150W to 2㎾. These oscillators are designed mainly fur cutting and welding sheet metals. The oscillator has an exceptionally superior laser beam quality compared to conventional YAG laser oscillators, thus providing significantly improved machining capability. In addition, the laser beam of the oscillator can be efficiently transmitted through quartz optical fibers, enabling laser machines to be simplified and made more compact. This paper introduces the features of FANUC’s developed Slab type YAG laser oscillators and their applications. - Part II - All-solid-state lasers employing laser diodes (LD) as a source of pumping solid-state laser feature high efficiency, compactness, and high reliability. Thus, they are expected to provide a new generation of processing tools in various fields, especially in automobile and aircraft industries where great hopes are being placed on laser welding technology for steel plates and aluminum materials for which a significant growth in demand is expected. Also, in power plants, it is hoped that reliability and safety will be improved by using the laser welding technology. As in the above, the advent of high-power all-solid-state lasers may not only bring a great technological innovation to existing industry, but also create new industry. This is the background for this project, which has set its sights on the development of high-power, all-solid-state lasers with an average output of over 10㎾, an oscillation efficiency of over 20%, and a laser head volume of below 0.05㎥. FANUC Ltd. is responsible for the research and development of slab type lasers, and TOSHIBA Corp. far rod type lasers. By pumping slab type Nd: YAG crystal and by using quasi-continuous wave (QCW) type LD stacks, FANUC has already obtained an average output power of 1.7㎾, an optical conversion efficiency of 42%, and an electro-optical conversion efficiency of 16%. These conversion efficiencies are the best results the world has ever seen in the field of high-power all-solid-state lasers. TOSHIBA Corp. has also obtained an output power of 1.2㎾, an optical conversion efficiency of 30%, and an electro-optical conversion efficiency of 12%, by pumping the rod type Nd: YAG crystal by continuous wave (CW) type LD stacks. The laser power achieved by TOSHIBA Corp. is also a new world record in the field of rod type all-solid-state lasers. This report provides details of the above results and some information on future development plans.

  • PDF

Flow characteristics of supersonic twin-fluid atomizers (초음속 2유체 분무노즐의 유동 특성)

  • Park, Byeong-Gyu;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2267-2276
    • /
    • 1996
  • Twin-fluid atomization has been widely used in combustors and process industries because of its high performance and simple structure. Flow visualization and pressure measurements were conducted to investigate the effects of gas flow in twin-fluid atomization. Schlieren photographs showed that changes in atomizing gas pressure, altered the wave patterns, and the lengths of both recitrculating toroid (impinging stangnation point) nad supersonic flow region in the jet. A longer supersonic wave pattern like net-shape wqas observed as atomizing gas pressure increased. The disintegration phenomenon of liquid delivery tube. The variation of spray angles with gas pressures were obtained by visualization using laser sheet beam. Suction pressuresat the nozzle orifice exit and recirculating region are shown to be used to estimate the stable atomization condition of a twin-fluid atomizer.

Behavior and Ductility of Reinforced Concrete Beams Strengthened by CFRP (CFRP가 보강된 철근콘크리트 보의 거동과 연성)

  • Kim, Jin-Yul;Kim, Kwang-Soo;Park, Sun-Kyu;Lee, Young-Jae
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.225-231
    • /
    • 2007
  • In the recent construction industry, FRP is highly interesting in strengthening members of structures because it has superior material properties. This paper is an experimental study on the structural behavior of reinforced concrete beam when in using various amount of CFRP and the ductility of beams using various type of CFRP. In the experiment, when it makes an experiment using various amount of CFRP, strengthening width is more efficient than strengthening layer. The failure of CFRP strengthened beams presented brittle modes with having flexural failures. Also, It represented that most of beams classify brittle failure in the side of energy ratio. Energy ratio of CFRP sheet comparing with CFRP plate exceeds overall 50% and it represents about 70% in case of beams without strengthening layer.